Tres situaciones. La primera:
n <- 20 y <- 15 test <- prop.test(y, n, p = .5) test$p.value # [1] 0.04417134 test$conf.int # 0.5058845 0.9040674 La segunda:
n <- 200 y <- 115 test <- prop.test(y, n, p = 0.5) test$p.value #[1] 0.04030497 test$conf.int # 0.5032062 0.6438648 Y la tercera:
n <- 2000 y <- 1046 test <- prop.test(y, n, p = 0.5) test$p.value #[1] 0.0418688 test$conf.int # 0.5008370 0.5450738 En resumen:
Envalentonado por el comentario de Iñaki Úcar a mi entrada del otro día, que me remitía a este artículo, decidí rizar el rizo y crear intervalos de confianza no ya discontinuos sino con otra propiedad topológica imposible: homeomorfos con un toro.
Y aquí está:
El modelo, el código y demás,
library(rstan) library(ggplot2) n <- 100 a1 <- 1 a2 <- 1 sigma <- 0.4 datos <- data.frame(x1 = rnorm(n, 2, 0.
Es el de b:
(A ver cuál es el primero de mis excolegas que protesta que pinto la unión de dos intervalos de confianza y no un intervalo propiamente dicho).
Ahora un poco más en serio: esta entrada se me ocurrió mientras pensaba en las distintas opciones existentes para crear intervalos de confianza, desde las canónicas (simétricos, de longitud mínima) a cualquier otra elección de algo que contenga la debida cantidad de probabilidad.