Isciii

Recordatorio: no olvidéis restar los fallecimientos atribuibles al calor en la estimación del efecto de la "segunda ola"

La estimación de la mortalidad atribuible a la gripe estacional (que no, que no se hace consultando la causa de muerte que consignan los médicos medio al buen tuntún por motivos administrativos y que luego recoge el INE, como parece que dan a entender estos beneméritos verificadores para la confusión de quienes den su palabra por buena) tiene una complicación sustancial: ocurre simultánea y co-casualmente con el frío, que incrementa las defunciones por motivos otros. En términos estadísticos, es un problema de práctica colinealidad entre dos regresores cuyos coeficientes miden el impacto de la gripe y el frío respectivamente.

Un recordatorio: MOMOCalor está "up and running"

Por desgracia, MoMo ya no exige presentación. Pero con los termómetros acariciando los 40º no está mal recordar la existencia de MoMoCalor, su hermanito, que trata atribuir mortalidad a los excesos de temperaturas.

¿Por qué es particularmente importante MoMoCalor hoy? Recuérdese que MoMo estima, simplemente, desviaciones de mortalidad con respecto a la que sería la normal en una fecha determinada. Cuando hay una epidemia o una ola de calor, la mortalidad crece y MoMo lo detecta. Pero cuando hay una epidemia y una ola de calor simultáneas, MoMo es incapaz de atribuir muertos las causas anómalas subyacentes. Pero MoMoCalor sí.

El incentivo perverso

Viene a cuenta de este tuit,

que hace referencia a este parrafito en el artículo enlazado:

Quizás lo más grave es que el acceso a los datos está siendo restringido incluso entre científicos. “Desde el principio solicitamos información desagregada por municipio y franjas de edad al Instituto Carlos III —explica Manrubia—. Recibimos la respuesta de que se estaban revisando y que pronto se harían públicos. Todavía no lo son. La opacidad en los datos sonaba a ocultismo”. También Diego Ramiro, del Instituto de Economía, Geografía y Demografía del CSIC, describe una experiencia similar después de haber solicitado datos al ISCIII sin éxito: “No podrán dar respuesta por el poco personal que tienen”.

53 (o, ¿cuál es la prior?)

En la documentación técnica del estudio ENE-COVID19 (recuérdese: INE + ISCIII) se describe un estudio de fiabilidad previo del test rápido (sección A1.2) que se anuncia así:

Según el fabricante, el test tiene una sensibilidad del 88% y 97% para determinar IgM e IgG respectivamente, y una especificidad de 100% frente a ambos isótopos. Para comprobar el comportamiento del test elegido, se han llevado a cabo dos estudios de fiabilidad.

Veamos en qué consisten.

Análisis (bayesiano) de pruebas con sensibilidad/especificidad desconocida

Esto tiene que ver con lo del estudio ENECOVID, por supuesto.

Esto tiene que ver con los ajustes que hay que realizar en los resultados por la menos que perfecta sensibilidad y especificidad.

Porque no basta con lo que diga el prospecto de los kits chinos.

Por eso es recomendable leer Bayesian analysis of tests with unknown specificity and sensitivity.

Coda: Cuando era matemático y comencé a estudiar estadística, me llamaba mucho la atención (por no decir que me escandalizaba) la alegría con la que estimadores sujetos a error de un modelo se insertaban como verdad divina en otro. Que es lo que aparentemente se hace cuando el estimador puntual de sensibilidad y especificidad copipega tal cual en las fórmulas del ajuste.

Defunciones: INE vs MoMo

[Fe de errores: en varias secciones de lo que sigue se hace referencia a 2018 como año completo. En realidad, solo se están usando los datos de los trimestres 2, 3 y 4 de 2018, que es en los que hay solapamiento entre los datos del INE y de MoMo.]

Es un error tomar las cifras de MoMo literalmente. Está explicado por doquier: MoMo no es el INE sino un sistema de alerta temprana por mortalidad. MoMo es el mejor sistema rápido que existe. El INE es lento (a día de hoy, solo tiene disponibles resultados provisionales de mortalidad del la primera mitad de 2019).

¿Deberían publicarse datos "en beta"?

Cuando vivía en Tailandia solía decir sobre la cultura corporativa de ese país que daba igual que las cosas se hiciesen bien o mal con tal de que se hiciesen tarde.

INE, CIS, ISCIII, etc., son un poco mejores: da igual que los datos se publiquen cuando ya no hacen falta con tal de que sean perfectos.

La pregunta es: ¿deberían publicarse datos imperfectos y con caveats pronto?

Nota: Eso ya se hace con indicadores importantes (véase esto).

MoMo: una documentación oficiosa

Estos días se habla de MoMo y por primera vez en quince años largos, el público está contemplando gráficas como

que resumen lo más jugoso del sistema. MoMo (de monitorización de la mortalidad) es un sistema desarrollado por el ISCIII para seguir en tiempo casi real la evolución de la mortalidad en España.

Utiliza como fuente de datos fundamental la procedente de los registros civiles informatizados, que son la práctica mayoría (aunque no todos: queda excluido ~5% de la población). Además, las defunciones tienen cierto retraso en la notificación, como ya he comentado aquí.

Monitorización diaria de la mortalidad

[En esta entrada deambulo peligrosamente por los límites de un NDA; sin embargo, me siento obligado a exponerme a las posibles consecuencias debido a la gravedad de las circunstancias actuales.]

En España existe un mecanismo de monitorización de la mortalidad diaria por todas las causas. Su existencia no es explícitamente pública, pero sí que existen indicios implícitos de su existencia en informes de salud pública: véanse, p.e., referencias a MoMo y EuroMOMO aquí. [Nota: MoMo es el acrónimo de mortality monitoring].