jaynes

¿La teoría de la probabilidad no extiende la lógica?

Después de haber estado un tiempo —hasta tener que interrumpirlo para convertirme en un elemento socialmente productivo— leyendo sobre cómo la teoría de la probabilidad extiende la lógica (Jaynes, Hacking y compañía), he incurrido en Probability theory does not extend logic. Se trata de un ensayito recomendable pero sobre el que advierto a sus posibles lectores que decae rápidamente de mucho al fango. De él extraigo una interpretación muy heterodoxa de la probabilidad condicional expresada en términos de la lógica de predicados.

Un argumento para usar la normal: la maximización de la entropía

Llegaré a la normal. Antes, algo sobre la entropía. Nos interesa saber y medir el grado de concentración de una distribución. Por ejemplo, si X es una variable aleatoria con función de densidad $latex f(x)$ y $latex x_1, \dots, x_n$ es una muestra de X, entonces, la expresión $$ \frac{1}{n} \sum_i f(x_i)$$ da una idea de la concentración vs dispersión de X: Si es grande, muchos de los $latex x_i$ procederán de lugares donde $latex f$ es grande; en un caso discreto, que tal vez ayude a mejorar la intuición sobre la cosa, habría muchos valores repetidos.

El teorema de Bayes como la versión modal del modus tollens

El otro día alguien argumentaba (de una manera que no voy a adjetivar): La lógica (proposiciona, de primer orden) es importante (si lo que se pretende es actuar racionalment), la probabilidad no tanto. El teorema de Bayes es solo un resultado trivial dentro de una disciplina mucho menos relevante que la lógica. Ergo, ¿por qué tanto coñacito con el dichoso teorema de Bayes? Como había alguien equivocado en internet, sonaron todas las alarmas que tengo colocadas en casa y tuve que acudir a enderezar el tuerto.