Llms

ALIA: los enlaces

ALIA es el LLM público español. Hasta hace no mucho se sabía poco de él. Durante meses, solo hubo dos clústers de noticias:

  • Uno, alededor del 25 de febrero de 2024, coincidiendo con el anuncio de la cosa (véase, por ejemplo, esto o esto).
  • Otro, alrededor de abril de 2024, cuando se anunció un acuerdo con IBM para el desarrollo de dicho modelo (veáse esto o esto).En esa época ya tenía nombre, ALIA, y se lo esperaba para después del verano (véase esto).

Después hubo una especie de apagón informativo —acabó el verano y yo no paraba de pulsar F5 en Google en vano— solo rasgado por una críptica nota de Alberto Palomo, aquél que fue ungido tiempo atrás como el CDO del Reino de España, que en una entrevista en El Confidencial a principios de diciembre decía de pasada que:

Unas cuantas noticias sobre LLMs

GPT-4 se entrenó usando un clúster de 25k GPUs, Musk planea construir un centro de datos con 100k GPUs y Meta, uno de 350k. Sin embargo, parece que tecnologías emergentes como DiLoCo (de distributed low communication), permitirá entrenar esos modelos sin necesidad de grandes centros de cálculo. Una visión alternativa en la que se especula con la construcción de enormes centros de datos (con potencias eléctricas de hasta de 5GW) puede verse aquí.

Sobre los nombres de persona asociados a coeficientes intelectuales bajos y algunos otros asuntos más

En Dear Political Scientists: Don’t Bin, GAM Instead se discute una ocurrencia concreta de una disyuntiva más general que aparece frecuentemente en la práctica: crear varios modelos simples con bloques diferentes de datos contra utilizar un modelo global flexible que englobe todos los datos. Tengo la sospecha de que se ha optado históricamente por la primera aproximación por motivos —entre otros— computacionales que ya no operan.

La única manera de plantearse en serio la pregunta Will Transformers Revolutionize Time-Series Forecasting? es no saber de predicción de series temporales y no saber de transformers. No está nada claro, por ejemplo, cómo usar transformers para modelar series como $y_t = \alpha t + \epsilon_t$. Pudiera ser que LSTM funcionase mejor (véase esto o esto) pero sigo apostando por Forecasting: Principles and Practice.

LLMs: ModernBERT y algunos asuntos más

Aplicaciones

Daisy, una “abuelita IA” para marear a los estafadores. Se trata de una herramienta creada por O2 en el RU que atiende llamadas telefónicas de timadores y entabla conversaciones con ellos con el objetivo último de hacerles perder tiempo. Van a ser entretenidos los falsos positivos cuando, sin duda, los haya.

Prompts

Por un lado, internet está plagada de tutoriales y trucos para generar mejores prompts. Por otro, se advierte una brecha cada vez más ancha entre quienes saben utilizar los LLMs con cierta soltura y los que no. Uno de los problemas que plantean los LLMs es que cada cual, por el momento, está prácticamente solo a la hora de diseñar su propio arsenal de herramientas construidas sobre los LLMs que resulten útiles para su trabajo concreto. Por eso y a pesar de la objeción que planteo arriba, me atrevo a mostrar, como ejemplo de buen uso de estas tecnologías lo que se cuenta en 5 Mega ChatGPT Prompts that I Use Everyday to Save 4+ Hours.

Claude y el desafío matemático navideño de 2024

Dice Gaussianos:

Siguiendo la tradición desde 2012, vuelve el Desafío Matemático RSME-El País de Navidad. Este año, como hace ya tiempo, de nuevo es Adolfo Quirós (profesor de la Universidad Autónoma de Madrid (UAM) y director de La Gaceta de la Real Sociedad Matemática Española) quien nos lo presenta.

El problema es el siguiente:

El desafío comienza cuando elegimos dos números de la Lotería de Navidad (recordemos que tienen 5 cifras), con la única condición de que cumplan estos dos requisitos:

LLMs: ajedrez, poesía, "ciencia normal", "prompts" y "RAG"

Poesía

Hace poco se publicó un artículo en el que se estudiaban los resultados de un estudio ciego en el que a una serie de sujetos se les presentaban poemas escritos sea por humanos o por LLMs y se les preguntaba su opinión al respecto. No he leído el artículo, pero aquí están las opiniones no enteramente coincidentes al respecto de Tyler Cowen y de Jessica Hullman.

Ajedrez

Uno de los resultados más sorprendentes del prehistórico GPT-2 es que había aprendido a jugar al ajedrez sin que nadie le hubiese enseñado explícitamente. Cuatro años después, Dynomight ha retomado el asunto y ha escrito esto y esto.

LLMs: algunas herramientas (potencialmente) útiles

Artefactos de Claude

Uno de los aplicaciones derivadas de los LLMs que más satisfacciones me están dando son los artefactos de Claude (véase, por ejemplo, esto).

Es complicado en todo caso ejecutar aplicaciones web generadas por Claude (vía artefactos) por defecto sin haber configurado previamente un entorno en node con las dependencias adecuadas. Los artefactos están pensados para, por defecto, ser alojados por Claude directamente. Si uno quiere bajar el código y correrlos en su propia máquina, tiene que hacerlo en un entorno en el que existan las dependencias correspondientes.

Cinco breves notas sobre LLMs

I.

En The “it” in AI models is the dataset se sostiene algo que ya traíamos sabido: que los modelos (incluidos los LLMs) son resúmenes de los datos con los que se entrenan:

Así, cuando hablas de “Lambda”, “ChatGPT”, “Bard” o “Claude” no te refieres a los pesos del modelo sino al conjunto de entrenamiento.

II.

Hablar de hardware en el contexto de los LLMs parecería casi exclusivamente hablar de NVIDIA, pero no solo. El modelo es el siguiente:

Unas cuantas aplicaciones de los LLMs

En la entrada de hoy recopilo unas cuantas aplicaciones de los LLMs.

Enlazo una entrevista a Tyler Cowen discutiendo cómo usa los GPTs. Según extrae NotebookLM de su transcripción, sus principales casos de uso son:

  • Investigar hechos históricos oscuros.
  • Traducir cualquier cosa.
  • Obtener información sobre menús en restaurantes el extranjero.
  • Identifciar plantas y pájaros.
  • Comprender temas complejos y generar preguntas para entrevistas.
  • Obtener información a partir de los diarios personales.
  • Entender las necesidades de su perro.

Aquí, una charla de Simon Willison sobre LLMs en general y sus aplicaciones en particular.

Mamba vs "transformers" y cuatro asuntos más

I. Lo que hemos aprendido

Una serie de tres entradas (táctica, estrategia y operaciones) sobre todo lo que hemos aprendido en el tiempo que llevamos desarrollando aplicaciones con LLMs.

II. Prompts

El modelo CO-STAR (contexto, objetivo, estilo, tono, audiencia y respuesta) me ha resultado muy útil para ciertas aplicaciones. Aunque, un día que no es el de hoy, será posible automatizar la búsqueda de prompts efectivos.

III. GPT-2

Cuando apareció, GPT-2 parecía realmente magia. Pero hoy se puede entrenar en hora y media por veinte dólares.

Argumentos para discutir sobre la inteligencia de los LLMs y cuatro asuntos más

I. Visualización

Recopilo aquí cuatro enlaces vagamente hermanados por su relación con la visualización (y los LLMs):

  • Exploración interaectiva de la arquitecturas de ciertos LLMs, aquí.
  • Una visualización/animación sobre cómo funcionan los transformers, aquí.
  • Aquí, en vídeo.
  • Y dos para tokens, este y este.

II. Inteligencia

Dos discusiones, esta y esta, sobre la inteligencia de los LLMs. De la primera rescato eso de que estamos moviendo constantemente la portería de eso que llamamos inteligencia. De la segunda, la vinculación de lo que hacen actualmente los LLMs con el pensar deprisa y despacio de Kahneman.

Monosemanticidad: una introducción para despistados

I.

Hay gente que estudia el funcionamiento del cerebro. Una de las cosas que buscan es tratar de relacionar funciones cognitivas con regiones concretas. Para eso usan MRI, electrodos, etc. Yo qué sé. Un problema al que se enfrentan los investigadores es que estos procedimientos son o muy intrusivos, o tienen mucho ruido o ambos a la vez.

Hay gente que busca entender de manera similar los LLMs y responder a preguntas del tipo: ¿es posible identificar coeficientes (o grupos de coeficientes) relacionados con conceptos concretos? Además, examinar los coeficientes de un LLM es mucho más sencillo que estudiar sinapsis de lejos. De todos modos, no está claro, a priori, que tenga que ocurrir de esa manera, es decir, que tengan que existir regiones (no necesariamente físicamente colindantes) de los coeficientes que estén vinculadas unívocamente a un concepto determinado.

¿Por qué es "tan fácil" la optimización en altas dimensiones?

Esta es la función de Rosenbrock, también conocida como función plátano o —en algunos contextos— como el coco:

Es una de esas funciones contra la que tienen que demostrar su valía los algoritmos de optimización que los matemáticos discurren por ahí. La función ilustra uno de los problemas habituales de la optimización: las variables se confabulan para que las ideas simples no funcionen: los gradientes no apuntan hacia el mínimo, este se encuentra en un valle estrecho, etc. Y que conste que las he visto peores en la práctica.