Ludismo

Cómo "vender" los "algoritmos"

He leído —consecuencia del aburrimiento y la inercia— en diagonal el artículo Explorando las narrativas locales: claves para entender el apoyo político a VOX que no recomiendo salvo que tengas un rato que matar y ninguna otra cosa que hacer pero del que rescato esta pequeña gema:

Sobre estos datos utilizo un algoritmo de aprendizaje automático (muy similar al que emplea el correo electrónico para determinar qué mensajes deberían ir a la carpeta de correo no deseado) para clasificar los tweets por tema.

Solo el modelo vacío pasa todos los "checks"

Cuando uno crea uno de esos modelos que tanta mala fama tienen hoy en día —y sí, me refiero a esos de los que dependen las concesiones de hipotecas, etc.— solo tiene dos fuentes de datos:

  • La llamada información _estadística _acerca de los sujetos: donde vive, sexo, edad, etc.
  • Información personal sobre el sujeto: cómo se ha comportado en el pasado.

Sin embargo, aquí se nos informa de cómo ha sido multado un banco finlandés por

Una versión aún más sencilla

… que la de “Algoritmos” y acatarrantes definiciones de “justicia”. Que es casi una versión de la anterior reduciendo la varianza de las betas.

Las dos poblaciones de interés tienen una tasa de probabilidad (o de riesgo, en la terminología del artículo original) de .4 y .6 respectivamente. Aproximadamente el 40% de los primeros y el 60% de los segundos tienen y = 1.

El modelo (el algoritmo) es perfecto y asigna a los integrantes del primer grupo un scoring de .4 y a los del segundo, de .6.

"Algoritmos" y acatarrantes definiciones de "justicia"

Lee Justicia: los límites de la inteligencia artificial… y humana y cuando acabes, te propongo un pequeño experimento probabilístico. Por referencia, reproduzco aquí los criterios de justicia del artículo que glosa el que enlazo:

Centrémonos en (B), sabiendo que, por simetría, lo que cuento se aplica también a (C).

Supongamos que tenemos dos grupos, cada uno de ellos de

n <- 1000000

personas para estar en las asíntotas que aman los frecuentistas. Estos grupos tienen distribuciones distintas de un factor de riesgo,