Sobre la elipse que "mejor" se ajusta a una "nube de puntos"
Es un problema conocido ese de tener una nube de puntos $(x_i, y_i)$ y preguntarse por la mejor recta (o polinomio de grado 2, 3, etc.) que los ajusta. Pero a veces uno busca la mejor elipse. Un caso del que me acuerdo (aunque allí se buscaba un círculo, más bien), es en Calculando la redondez de una piedra con R. Yo me encontré con el problema al construir una pequeña herramienta que me ayudase a mejorar el trazo de mis elipses a mano alzada; se trata de una página web (para visitar idealmente desde una tableta con lápiz electrónico) que: