Modelo Lineal

Interacciones y selección de modelos

Desafortunadamente, el concepto de interacción, muy habitual en modelización estadística, no ha penetrado la literatura del llamado ML. Esencialmente, el concepto de interacción recoge el hecho de que un fenómeno puede tener un efecto distinto en subpoblaciones distintas que se identifican por un nivel en una variable categórica.

El modelo lineal clásico,

$$ y \sim x_1 + x_2 + \dots$$

no tiene en cuenta las interacciones (aunque extensiones suyas, sí, por supuesto).

¿Victoria o diferencia de puntos? ¿lm o glm?

Supongamos que queremos construir un modelo para predecir quién ganará un determinado partido de baloncesto basándonos en datos diversos. Y en un histórico, por supuesto.

Podemos utilizar una regresión logística así:

set.seed(1234)

my.coefs <- -2:2
n <- 200
train.n <- floor(2*n/3)

test.error.glm <- function(){
  X <- matrix(rnorm(n*5), n, 5)
  Y <- (0.2 + X %*% my.coefs + rnorm(n)) > 0

  train <- sample(1:n, train.n)

  X <- as.data.frame(X)
  X$Y <- Y

  mod.glm <- glm(Y ~ ., data = X[train,],
    family = binomial)

  glm.pred <- predict(mod.glm, X[-train,],
    type = "response")

  error <- length(glm.pred) -
    sum(diag(table(glm.pred > 0.5, Y[-train,])))
}

errores.glm <- replicate(1000, test.error.glm())