Un par de paradojas de la teoría de la probabilidad y algunos asuntos más

Comienzo la entrada de hoy con un enlace al muy denso Interpretations of probability, en la Enciclopedia de Filosofía de Stanford que, admito, no será del interés de la mayoría. Podría llegar a decirse —aunque no me atreveré a tanto— que en toda disciplina intelectual tiene que haber paradojas porque de otra manera, sería indistinguible del uso sistemático del sentido común. Así que hoy traigo a colación este análisis de un caso particular de la paradoja de Berkson (que se añade a las ocasiones en las que ya me he referido a ella) y este otro sobre la de Lindley. La primera tiene que ver con la correlación que aparece entre dos variables aleatorias independientes cuando de repente observamos información concomitante; la segunda, con los test de hipótesis (asunto del que, por fortuna, me he mantenido alejado durante largo tiempo). ...

1 de abril de 2025 · Carlos J. Gil Bellosta

Si Pearson hubiese tenido un ordenador como el mío...

… muchas cosas serían muy distintas hoy en día. Hoy quiero elaborar sobre su artículo de 1900 X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling famoso por nada menos que introducir el concepto de p-valor y el uso de la $\chi^2$ para medir la bondad de ajuste. ...

13 de junio de 2023 · Carlos J. Gil Bellosta

Misma p, distinto n, luego...

Tres situaciones. La primera: n <- 20 y <- 15 test <- prop.test(y, n, p = .5) test$p.value # [1] 0.04417134 test$conf.int # 0.5058845 0.9040674 La segunda: n <- 200 y <- 115 test <- prop.test(y, n, p = 0.5) test$p.value #[1] 0.04030497 test$conf.int # 0.5032062 0.6438648 Y la tercera: n <- 2000 y <- 1046 test <- prop.test(y, n, p = 0.5) test$p.value #[1] 0.0418688 test$conf.int # 0.5008370 0.5450738 En resumen: mismo problema distintos tamaños muestrales mismo p-valor (aproximadamente) distintos estimadores distintos intervalos de confianza La pregunta: ¿qué circunstancia es más favorable? Una respuesta, aquí. Coda: Había olvidado que había escrito sobre el mismo asunto años atrás. Precisamente, en p, n y mi moneda de la suerte.

30 de julio de 2020 · Carlos J. Gil Bellosta

Sobre "Predicción, estimación y atribución"

Subrayo hoy aquí tres cuestiones que considero importantes del reciente artículo Prediction, Estimation, and Attribution de B. Efron (para otra visión, véase esto). La primera es que existe una cadena de valor en la modelización estadística que va del producto más ordinario, la predicción, a la estimación y de este, al más deseable, la atribución. En la terminología de Efron, estimación consiste en la determinación de los parámetros subyacentes (e importantes) del modelo; específicamente se refiere a la estimación puntual; atribución tiene que ver con intervalos de confianza, p-valores, etc. de esos parámetros. La segunda es que la predicción es un problema fácil, mientras que la estimación (y la atribución) son mucho más complicados. Lo ilustra con un ejemplo sencillo: comparando la eficiencia de dos modelos, uno el óptimo y otro ligeramente inferior para: ...

10 de junio de 2020 · Carlos J. Gil Bellosta

No hagáis esto o se darán cuenta de que sois muy cutres

Lo que no hay que hacer nunca si no quieres que se enteren de que eres inmensamente cutre es escribir código en las líneas del siguiente seudocódigo: m = model(y ~ a + b + c) if (modelo.p_value(a) > .05) m = model(y ~ b + c) ¡No, no, no, no, NO!

2 de junio de 2020 · Carlos J. Gil Bellosta

P-valores y decisiones

Los números de esta entrada son reales aunque disfrazados: proceden de un proyecto real. Para medir la efectividad de una serie de modelos que hemos creado en Circiter, hemos pedido al cliente lo de siempre: que parta la lista de sujetos en dos al azar para después poder medir los éxitos y fracasos usando dos procedimientos distintos. Pero como tenemos dudas acerca del proceso de partición —que no controlamos nosotros— hemos medido el número de éxitos y fracasos en cada uno de los grupos en una prueba previa. Esperábamos que las proporciones fuesen similares en ambos grupos y hemos obtenido esto: ...

4 de diciembre de 2019 · Carlos J. Gil Bellosta

Sic "scientia" facta est

Hoy escribo brevemente para comentar una herramienta con la que ayudar a pretendidos investigadores a hacer ciencia. Las instrucciones están aquí y la herramienta con la que entrenarse, aquí. ¡Feliz contribución a ese futuro que sin ciencia dizque no será!

10 de enero de 2019 · Carlos J. Gil Bellosta

p-valores y el perro que no ladró

Tengo un montón de artículos por ahí guardados que fueron escritos a raíz de la publicación de The ASA’s Statement on p-Values: Context, Process, and Purpose, ya en 2016, que ponía en cuestión el uso indiscriminado y acrítico de los p-valores. Algunos de ellos son este, este, este o este. Asunto que se refiere a y abunda en todo lo que se ha escrito sobre la llamada crisis de replicabilidad, sobre la que también se ha escrito largamente. ...

20 de diciembre de 2018 · Carlos J. Gil Bellosta

p-curvas

Primero, una simulación: n <- 100 delta <- 0.2 n.iter <- 10000 p_valores <- function(n, delta){ tmp <- replicate(n.iter, { x <- rnorm(n) y <- rnorm(n, mean = delta) t.test(x, y)$p.value }) res <- tmp[tmp < 0.05] hist(res, freq = FALSE, xlab = "p value", ylab = "", col = "gray", main = "histograma de p-valores publicables") res } null_effect_p_values <- p_valores(n, 0) some_effect_p_values <- p_valores(n, delta) Lo que simula son n.iter experimentos en los que se comparan n valores N(0,1) con otros n valores N(delta, 1) y se extrae el correspondiente p-valor. Luego se grafican los publicables (<0.05). Cuando diff es 0, sucede: No hay diferencia entre x e y, i.e., no hay efecto real. Los p-valores tienen una distribución uniforme en [0,1] y, por tanto, también en [0, 0.05]. Así que la p-curva tiene una forma característica, aproximadamente como ...

12 de diciembre de 2017 · Carlos J. Gil Bellosta

La tierra es redonda (p < 0.05)

A sus 72 años, en 1994, J. Cohen dejó casi para la posteridad un excelente artículo, The earth is round (p < .05). Traduzco el resumen: Tras cuatro décadas de severa crítica, el ritual del contraste de hipótesis (NHST) —decisiones mecánicas y dicotómicas alrededor del sagrado criterio del 0.05— todavía perdura. Este artículo repasa los problemas derivados de esta práctica, incluyendo la casi universal malinterpretación del p-valor como la probabilidad de que H0 sea falsa, la malinterpretación de su complementario como la probabilidad de una réplica exitosa y la falsa premisa de que rechazar H0 valida la teoría que condujo a la prueba. Como alternativa, se recomiendan el análisis exploratorio de datos y los métodos gráficos, la mejora y la estandarización progresiva de las medidas, el énfasis en la estimación de los tamaños de los efectos usando intervalos de confianza y el uso adecuado de los métodos estadísticos disponibles. Para garantizar la generalización, los sicólogos deben apoyarse, como ocurre en el resto de las ciencias, en la replicación. ...

14 de febrero de 2017 · Carlos J. Gil Bellosta