procesos puntuales

Simulación de procesos de Poisson no homogéneos y autoexcitados

Fueron mis modelos favoritos un tiempo, cuando modelaba visitas y revisitas de usuarios a cierto malhadado portal. Si las visitas fuesen aleatorias (en cierto sentido), tendrían un aspecto no muy distinto del que se obtiene haciendo library(IHSEP) suppressWarnings(set.seed(exp(pi * complex(imaginary = 1)))) tms <- simPois(int = function(x) .1, cens = 1000) hist(tms, breaks = 100, main = "Proceso homogéneo de Poisson", xlab = "", ylab = "frecuencia") Es decir,

La diapositiva perdida, versión algo más extendida

Tuve que saltarme una diapositiva en el DataBeers de Madrid del pasado jueves. (A propósito, aquí están las 1+20 diapositivas.) La decimonona, de la que trata la entrada, viene a hablar de lo siguiente. Tenemos una base de datos con sujetos (ids) que hacen cosas en determinados momentos. No es inhabitual calcular la frecuencia de esos sujetos así: select id, count(*) as freq from mytabla where fecha between current_date - 7 and current_date group by id ; Esa variable se utiliza frecuentemente ya sea como descriptor de los sujetos o como alimento de otros modelos.

(Mis) procesos puntuales con glm

Lo que escribí hace un par de días sobre procesos puntuales, ahora me doy cuenta, podía haberse resuelto con nuestro viejo amigo glm. Ejecuto el código del otro día y obtengo (para un caso nuevo) mu alfa verosimilitud delta 1 0.4493158 0.50000000 340.6141 1 2 0.2675349 0.40457418 307.3939 2 3 0.1894562 0.28917407 293.4696 3 4 0.1495654 0.22237707 287.0784 4 5 0.1243791 0.18079703 281.3900 5 6 0.

Procesos puntuales: una primera aproximación

Tengo una serie de datos que se parecen a lo que cierta gente llama procesos puntuales y que se parecen a los que se introducen (muuuuy prolijamente) aquí. Gráficamente, tienen este aspecto: Sobre un determinado periodo de tiempo (eje horizontal) suceden eventos y los cuento por fecha. Pero no suceden independientemente (como si generados por un proceso de Poisson) sino que tienden a agruparse: el que suceda un evento tiende a incrementar la probabilidad de que suceda otro poco después.