R

Diagramas causales hiperbásicos (I): variables omitidas y sus consecuencias

Comienzo hoy una serie de cuatro entradas (¡creo!) sobre diagramas causales supersimples que involucran a tres variables aleatorias: $X$, $Y$ y $Z$. En todos los casos, estaré argumentaré alrededor de en las regresiones lineales Y ~ X e Y ~ X + Z porque nos permiten leer, interpretar y comparar rápida y familiarmente los resultados obtenidos. En particular, me interesará la estimación del efecto (causal, si se quiere) de $X$ sobre $Y$, identificable a través del coeficiente de $X$ en las regresiones. No obstante, quiero dejar claro que:

Estadística en las ciencias blandas

Voy a comenzar con una simulación inofensiva,

set.seed(1)
n <- 10000
sigma <- .1
x <- runif(n)
# coeficientes:
indep <- -1
b_0 <- .5
# variable objetivo:
error <- rnorm(n, 0, sigma)
y_0 <- indep + x * b_0 + error
# modelo:
modelo_0 <- lm(y_0 ~ x)
summary(modelo_0)

que da como resultado

Call:
lm(formula = y_0 ~ x)

Residuals:
     Min       1Q   Median       3Q      Max
-0.42844 -0.06697 -0.00133  0.06640  0.37449

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.001951   0.001967  -509.5   <2e-16 ***
x            0.500706   0.003398   147.3   <2e-16 ***

Residual standard error: 0.0989 on 9998 degrees of freedom
Multiple R-squared:  0.6847,	Adjusted R-squared:  0.6846
F-statistic: 2.171e+04 on 1 and 9998 DF,  p-value: < 2.2e-16

Me he limitado a construir el típico conjunto de datos que cumple las condiciones de libro para poder aplicar la regresión lineal y he reconstruido los parámetros originales a través del resultado de esta: el término independiente (-1), la pendiente (.5), la desviación estándar del error (.1), etc.

"Proxys": error y sesgo en modelos lineales

El otro día publiqué un minihilo en Twitter que terminaba con una encuesta. Proponía el siguiente problema:

  1. Quiero, abusando del lenguaje, estimar el efecto de $x$ sobre $y$ usando el modelo lineal clásico $y = a_0 + a_1 x + \epsilon_1$.
  2. Pero no puedo medir $x$ con precisión. Solo tengo una medida ruidosa/aproximada de $x$, $z = x + \eta$, donde $\eta$ es normal, independiente de $\epsilon_1$, etc.
  3. Uso el modelo $y = b_0 + b_1 z + \epsilon_2$.

La pregunta que planteé consistía en elegir entre las siguientes tres opciones:

¿Por qué vivimos tantos españoles a tanta altitud?

Perdóneseme haber usado lenguaje causal en el título de esta entrada siendo así que no encontrará el lector indicios sólidos de respuesta en lo que sigue. Y, sobre todo, que no se confunda y me tome por un sociólogo a la violeta o un economista posmo: no, soy matemático.

Quiero simplemente hacer constar un pequeño ejercicio de análisis espacial usando los paquetes sf y terra de R motivado, eso sí, por una pregunta que se planteó en cierto foro a raíz de esta captura de la Wikipedia:

Aún más sobre propagación de errores (y rv)

[Menos mal que se me ha ocurrido buscar en mi propio blog sobre el asunto y descubrir —no lo recordaba— que ya había tratado el asunto previamente en entradas como esta, esta o esta.]

El problema de la propagación de errores lo cuentan muy bien Iñaki Úcar y sus coautores aquí. Por resumirlo: tienes una cantidad, $latex X$ conocida solo aproximadamente en concreto, con cierto error e interesa conocer y acotar el error de una expresión $latex f(X)$.

Mi apuesta para el larguísimo plazo: Julia

  • Larguísimo, arriba, significa algo así como 10 o 20 años. Vamos, como cuando comencé con R allá por el 2001.
  • R es, reconozcámoslo, un carajal. Pocas cosas mejores que esta para convencerse.
  • No dejo de pensar en aquello que me dijo un profesor en 2001: que R no podría desplazar a SAS porque no tenía soporte modelos mixtos. Yo no sabía qué eran los modelos mixtos en esa época pero, desde entonces, vine a entender y considerar que “tener soporte para modelos mixtos” venía a ser como aquello que convertía a un lenguaje para el análisis de datos en una alternativa viable y seria a lo existente. Y mirad esto.
  • Obviamente, lo de los modelos mixtos no es más que una metáfora. Realmente significa algo así como “el sistema X tiene muchas cosas y su alternativa, Y, es un mero juguete”. Pero no hay nada que impida que Y comience a implementar todo aquello que le falta. Además, mucho más rápida y eficientemente. P.e., ¿cuánto tardó R en dotarse de su gramática de los gráficos? Pues bien, Juilia ya los tiene. (¿Cómo se dice leapfrog en español?)
  • Dicho de otra manera, R ha sido el estado del arte en computación estadística en los últimos años. Ha avanzado por prueba y error. Pero ahora, cualquier rival ya sabe qué tiene que hacer exactamente para llegar a donde está R.
  • Julia corre sobre LLVM. Es decir, que se beneficia automáticamente de cualquier mejora realizada sobre la máquina virtual (si es que se me permite llamar así a LLVM).
  • Esta semana he estado programando en C unas rutinas que tienen que ser llamadas desde R. Pero, ¿no sería el mundo más hermoso no tener que cambiar de lenguaje para tener rendimiento de C?
  • Arriba comparo R y Julia como extremos de un arco (en el que a la izquierda de R quedan aún irrelevancias como SAS o SPSS). Python ocupa una posición intermedia entre ambos. Desde un punto de vista meramente técnico, si alguna dimensión es Python mejor que R, Julia es todavía mejor que Python. Salvo, de nuevo, la cantidad de flecos y cascabeles de los que ya dispone Python y que todavía no están presentes en Julia. Pero, como se ha dicho arriba, desde la perspectiva del larguísimo plazo, es una objeción irrelevante que apunta a un estado transitorio de las cosas.

Y supongo que podría seguir.

PCA robusto

Esta semana he descubierto el PCA robusto. En la frase anterior he conjugado el verbo en cursiva porque lo he pretendido usar con un significado que matiza el habitual: no es que haya tropezado con él fortuitamente, sino que el PCA robusto forma parte de esa inmensa masa de conocimiento estadístico que ignoro pero que, llegado el caso, con un par de clicks, una lectura en diagonal y la descarga del software adecuado, puedo incorporarlo y usarlo a voluntad.

Un viejo truco para que R vuele

R

Existe un viejo truco —mas no por ello conocido— para que R vuele. Lo aprendí en una conferencia de uno de los padres de R (aunque ya no recuerdo quién era) en la primera década del siglo. El problema que tenía entre manos era el de ajustar unos cuantos miles de regresiones logísticas. Además de hacer uso de los métodos de paralelización, aún muy rudimentarios en la época, uno de los trucos más efectivos que utilizaba era el de desnudar las funciones.

Hay mil motivos para criticar una regresión "trucha", pero una R² baja no es uno de ellos

Todo esto arranca con el tuit:

Esa gráfica, extraída de un documento de la OCDE, creo, fue uno de los argumentos esgrimidos por JR Rallo para defender cierta postura que no viene al caso. Lo relevante para estas páginas es que fue contestado y protestado por muchos —de algunos de los cuales, dada su autoproclamada condición de divulgadores científicos, cabría esperar más— en términos exclusivamente de lo pequeño de la R².

Análisis de eventos recurrentes

He sido fan del análisis de los eventos recurrentes desde antes incluso de saber que existía tal cosa formalmente.

Es una extensión del análisis de la supervivencia donde resucitas y vuelves a morirte a lo Sísifo. Es decir, en el análisis de la supervivencia, te mueres y ya; por eso, si quieres extender el análisis de la supervivencia a asuntos tales como compras de clientes es necesario usar el calzador muy heterodoxamente.