redes bayesianas

Allanando el camino a Andorra (aka he publicado mi primer vídeo en YouTube)

Por diversos motivos que no vienen al caso pero entre los que se cuentan lo frágil de mi voluntad, he acabado renunciado a renunciar a publicar material en YouTube. Así que he creado un canal (ilustrado por los archifamosísimos dados del perínclito Fomenko) y he publicado el que no cabe duda que será el primero de una larga y exitosa cadena de vídeos: Tengo algunas ideas en mente con el que alimentar el canal de contenido que será del gusto de las masas ilustradas y que el tiempo irá desvelando en su debido momento.

Más sobre la paradoja de Berkson

a: eres listo b: has estudiao c: la nota del examen Se supone que a y b son independientes. Pero conocido c, dejan de serlo (saber que eres listo y que has suspendido nos dice que…). Esto no es exactamente pero se parece a (o, más bien, es un caso que generaliza) la llamada Paradoja de Bergson, de la que hablé hace unos años.

Decisiones bajo incertidumbre (I)

Frecuentemente nos interesan unos efectos (E), tales como: Si un sujeto cumplirá con los términos de una hipoteca. Si un paciente responderá a un tratamiento. Si un adlátere circunstancial en el tren nos regalará una conversación amena. Si un transeúnte podrá o no darnos fuego para prender un cigarro. Si un individuo es o no un criminal. Si un candidato será o no un trabajador productivo en una empresa. Etc.

Naive Bayes como red bayesiana

Una red bayesiana es algo de lo que ya hablé (y que me está volviendo a interesar mucho últimamente). En esencia, es un modelo probabilístico construido sobre un grafo dirigido acíclico. Que, a su vez, es algo parecido a que es un grafo (obviamente), dirigido (tiene flechas) y acíclico porque siguiéndolas no se llega nunca al punto de partida. Se puede construir modelos probabilísticos sobre ellos. Basta con definir para cada nodo $latex x$ la probabilidad condicional $latex P(x|A(x))$, donde $latex A(x)$ son sus padres directos.

La red Asia

La red Asia es esto: Es decir, una red bayesiana. Una red bayesiana clásica sobre la que los interesados podrán saber más leyendo lo que Lauritzen y Spiegelhalter dejaron escrito sobre ella en 1988. Pero la idea básica es la siguiente: Los nodos superiores (visita a Asia, fumador) son variables observables sobre el comportamiento de unos pacientes. Los nodos inferiores (rayos X, disnea) son variables también observables, síntomas de esos pacientes.