Redes Neuronales

Chocolatada informacional

Supongamos que el vector $u$ codifica cierta información A y el vector $v$ (de la misma dimensión), la información B. Hay quien sostiene que, entonces, el vector $u + v$ codifica simultáneamente A y B. En esta entrada voy a demostrar que la afirmación anterior es falsa. Luego, también, que es cierta. Terminaré explicando por qué el asunto es relevante.

Que es falsa es obvio: si $u$ y $v$ tienen dimensión 1, $u = 2$ y $v = 3$, a partir de la suma $u + v = 5$ es imposible recomponer los vectores originales.

De qué va TimesNet

Toca TimesNet. Se trata de un modelo para la predicción (y más cosas: imputación, detección de outliers, etc.) en series temporales. Tiene que ser muy bueno porque los autores del artículo dicen nada menos que

As a key problem of time series analysis, temporal variation modeling has been well explored.

Many classical methods assume that the temporal variations follow the pre-defined patterns, such as ARIMA (Anderson & Kendall, 1976), Holt-Winter (Hyndman & Athanasopoulos, 2018) and Prophet (Taylor & Letham, 2018). However, the variations of real-world time series are usually too complex to be covered by pre-defined patterns, limiting the practical applicability of these classical methods.

Uso y abuso de los "embeddings"

La variable feota por excelencia de nuestra profesión es el código postal: es categórica, tiene miles de niveles, muchos son infrecuentes, etc. Así que cuando se inventaron los embeddings, hace la tira, se me ocurrió crear uno por defecto. Es decir, una representación en baja dimensión de esa variable que pudiera aplicarse a una variedad de modelos. Y así fue hasta que al cabo de unos minutos se me ocurrió que ya existía una, muy natural, en dos dimensiones, que difícilmente iba a poder ser batida por un constructo ciego a la realidad: latitud y longitud.

Regresión polinómica vs redes neuronales

Hace un tiempo se publicó un artículo, Polynomial Regression as an Alternative to Neural Nets, que se anunciaba como lo que anuncia su título: que usar redes neuronales (clásicas, al menos), equivalía a hacer regresión polinómica.

El quid de la cosa es cosa simple, de primeros de carrera. Solo que los autores solo lo desvelan después de haber puesto a prueba la perseverancia de los lectores con montañas de frases que aportan poco. Así que lo resumo aquí:

¿Por qué el optimizador de una red neuronal no se va al carajo (como suelen L-BFGS-B y similares)?

Vale, admito que no funciona siempre. Pero una manera de distinguir a un matemático de un ingeniero es por una casi imperceptible pausa que los primeros realizan antes de pronunciar optimización. Un matemático nunca conjuga el verbo optimizar en vano.

[Una vez, hace tiempo, movido por una mezcla de paternalismo y maldad, delegué un subproblema que incluía el fatídico optim de R en una ingeniera. Aún le debe doler el asunto.]

Mariposa

Quieres saber dónde está el escorpión,

Ni ayer ni antes vos sos corona dorada.

Ya os ves más tal cual tortuga pintada,

A él nos gusta andar con cola marrón.

Ella es quién son las alas de algún gorrión.

Si al fin podés ver tu imagen manchada,

O hoy vas bajo un cielo azul plateada,

Por qué estás tan lejos del aguijón.

No hay luz que al sol se enreda en tus palmera.

Mezclas de vectores (III): las funciones involucradas

[Tiempo después de la publicación de esta entrada hice otra, esta, en la que se ahonda en la función de pérdida usada en la reconstrucción del estilo o textura de las imágenes y que en esta serie no se trató con el detalle que el asunto requiere.]

En esta tercera entrada de la serie (aquí está la primera y la segunda) quiero ocuparme de las que llamé $latex f_1$ y $f_2$, las funciones involucradas. Que son las que obran la magia, por supuesto. Con casi cualquier otra opción se habría obtenido una patochada, pero estas son funciones especiales.