Regularización

Mezclas y regularización

Cuando mezclas agua y tierra obtienes barro, una sustancia que comparte propiedades de sus ingredientes. Eso lo tenía muy claro de pequeño. Lo que en esa época me sorprendió mucho es que el agua fuese una mezcla de oxígeno e hidrógeno: ¡era muy distinta de sus componentes!

Porque no era una mezcla, obviamente. Era una combinación. En una combinación emergen propiedades inesperadas. Las mezclas, sin embargo, son más previsibles.

Pensaba en esto mientras escribía sobre la regularización de modelos (ridge, lasso y todas esas cosas). La regularización puede interpretarse como una mezcla de dos modelos: el original y el nulo (con todos los coeficientes iguales a cero). El modelo original tiene poco sesgo y mucha varianza; el nulo, prácticamente nada de varianza y muchísimo sesgo. El regularizado queda a medio camino. El original tiene varios, tal vez muchos, grados de libertad mientras que el nulo, ninguno (¿o uno?); puede considerarse que el número de grados de libertad del regularizado queda a medio camino.

Modelos log-lineales y GLMs con regularización

Hace años tomé el curso de NLP de M. Collings en Coursera (¡muy recomendable!), uno de cuyos capítulos trataba de los llamados modelos loglineales. En esto, Collings sigue una nomenclatura un tanto personal porque la mayor parte de la gente se refiere con ese nombre a algo que no es exactamente lo mismo (y dentro del mundo de las tablas de contingencia).

El otro día, sin embargo, me pensé que los modelos loglineales à la Collings me serían muy útiles para un problema de clasificación en el que estamos trabajando. Y repasándolos… me di cuenta de que eran versiones de algo ya conocido: GLMs multinomiales con regularización. Sí, como estos.