Stable Diffusion

"Denoising diffusion" en una dimensión (entre otras simplificaciones)

I. Motivación e introducción

Denoising diffusion —DD en lo que sigue— es uno de los principales ingredientes del archipopular stable diffusion. Es un algoritmo que se usa fundamentalmente para generar imágenes y que funciona, a grandes rasgos así:

  • Se parte de un catálogo de imágenes, que son vectores en un espacio (de dimensión alta).
  • Esos vectores se difuminan utilizando un proceso concreto —piénsese en una especie de movimiento Browniano— hasta que su distribución es aproximadamente una normal (en ese espacio de dimensión elevada).
  • A partir de valores aleatorios de esa distribución normal, invirtiendo el proceso de difusión, se obtienen muestras del espacio original (de las fotos).

Subyace a todo este tinglado la conocida como hipótesis de la subvariedad. Todas las fotos son, en el fondo, vectores en $R^N$ donde si las fotos son, digamos, $1000 \times 1000$, $N$ es 3M (número de píxeles por el número de canales). La hipótesis de la subvariedad dice que la distribución de las fotos que reconocemos como tales —piénsese que la mayoría de las fotos de $R^N$ no dejan de ser manchas grises— residen en una subvariedad de dimensión baja incrustada en $R^N$. Generar imágenes equivale entonces a muestrear dicha subvariedad, con el problema de que no sabemos ni qué forma tiene ni dónde está. Lo que proporciona DD es un caminito para llegar a ella desde un punto cualquiera del espacio.