Teorema

Un recíproco para el teorema de Bernstein–von Mises

Aquí se describe una suerte de recíproco para el teorema de Bernstein–von Mises. Aquí se resume de esta manera:

El famoso teorema del acuerdo de Aumann demuestra que dos agentes racionales con las mismas prioris sobre un fenómeno pero que observan datos distintos llegarán a un consenso sobre las posterioris después de una charla civilizada mientras se toman té.

En resumen:

  • B-vM: frente a la misma evidencia, observadores con prioris distintas tienen posteriores similares.
  • Aumann: frente a evidencias disímiles, observadores con las mismas prioris pueden acordar posterioris similares.

Un ejemplo de "importance sampling" (que no sé cómo traducir)

Imaginemos que queremos muestrear una variable aleatoria cuya función de densidad es (proporcional a) el producto de otras dos (no necesariamente propias). Por ejemplo, la gamma, cuya función de densidad es $K x^{k-1} \exp(-\lambda x)$, el producto de una exponencial y una distribución impropia con densidad $x^{k-1}$.

Supongamos que no sabemos hacer

set.seed(1234)
shape <- 3
rate  <- 3
m0 <- rgamma(1000, shape = shape, rate = rate)

Pero supongamos que sí que sabemos muestrear la distribución exponencial, lo que permite escribir: