teorema

Un recíproco para el teorema de Bernstein–von Mises

Aquí se describe una suerte de recíproco para el teorema de Bernstein–von Mises. Aquí se resume de esta manera: The celebrated Aumann’s Agreement Theorem shows that two rational agents with the same priors on an event who make different observations will always converge on the same posteriors after some civilized conversation over tea. En resumen: B-vM: frente a la misma evidencia, observadores con prioris distintas tienen posteriores similares.

Un ejemplo de "importance sampling" (que no sé cómo traducir)

Imaginemos que queremos muestrear una variable aleatoria cuya función de densidad es (proporcional a) el producto de otras dos (no necesariamente propias). Por ejemplo, la gamma, cuya función de densidad es $latex K x^{k-1} \exp(-\lambda x)$, el producto de una exponencial y una distribución impropia con densidad $latex x^{k-1}$. Supongamos que no sabemos hacer 1 2 3 4 set.seed(1234) shape <- 3 rate <- 3 m0 <- rgamma(1000, shape = shape, rate = rate) Pero supongamos que sí que sabemos muestrear la distribución exponencial, lo que permite escribir: