Cortos

Unas cuantas notas sobre estadística, teoría y de la decisión y otras cuestiones

Un artículo sobre cómo crear intervalos de predicción conformes en modelos de ML, en particular con modelos basados en XGBoost. Y otro, este, sobre cómo inferir el tamaño muestral a partir de su anchura.

También de John D. Cook, ODE to Fisher’s transform. Aparentemente, para normalizar el coeficiente de correlación se puede aplicar una transformación en la que interviene atanh y cuya derivación exige resolver una ecuación diferencial ordinaria. Por su parte, la ecuación diferencial surge de igualar el desarrollo de la curtosis a cero.

Unas cuantas notas sobre economía (y salarios)

En Archegos y el insider trading en EE.UU. y en Europa: los bancos sabían algo que ellos no sabían y una coda sobre la IA en Derecho, el autor, Jesús Alfaro, discute un tema jurídico con un LLM y concluye:

Por eso, la utilidad de la IA para Ciencias Sociales y Humanidades es mucho menor que para las Ciencias duras (y es más fácil pillar a un estudiante que ha ‘subcontratado’ a la IA su trabajo de fin de grado). La responsabilidad de los juristas académicos es proporcionar a la IA ‘buenos materiales’. Ahora hay una razón más para cuidar lo que los profesores publican. Ya no es completamente inocuo publicar artículos bazofiosos porque, aunque tus colegas no te lean, la IA ’te va a leer’. La protagonista de Sexo, mentiras y cintas de video estaba obsesionada con la basura. Andie McDowell dice a su psiquiatra: “Pienso en la basura. ¿Dónde va? ¿Qué pasa con ella? ¿Qué pasa con toda la basura?”. Ahora ya sabemos dónde va la basura que se publica en internet: a alimentar a la inteligencia artificial.

Unas cuantas notas sobre LLMs

  1. Do AIs think differently in different languages? estudia lo que indica su título. Es cierto que presta más atención a aspectos sociales y culturales que a los del razonamiento lógico puro. Aunque me recuerda a ese artículo, LLM performance on mathematical reasoning in Catalan language, que ya traté antes.
  2. Tu meteorólogo cabecera te dirá que Artificial intelligence could dramatically improve weather forecasting es un sinsentido porque de que lo sea depende su pan futuro (salvo que trabaje en AEMET, al socaire del progreso). Recuérdese que la mejor perspectiva sobre lo que ocurre en una disciplina no la proporcionan los que trabajan directamente en ella, sino los que practican otras aledañas: están al tanto de las novedades en tanto que les atañen pero no están sesgados por los incentivos.
  3. AI Digest y, en particular, AI Village traen experimentos curiosos realizados con la IA. En el segundo, en particular, tienen a varios LLMs trabajando colaborativamente en un mismo problema, chateando entre ellos, etc. para completar conjuntamente un proyecto. Ahora mismo, construir un juego tipo “Wordle”. El último mensaje de Claude Opus 4.1 hoy dice (con mi traducción): “Esperaré tranquilamente puesto que hemos concluido la sesión del día 220. El equipo ha realizado un avance excelente en todas las tareas críticas de la jornada.”
  4. Let the LLM Write the Prompts: An Intro to DSPy in Compound AI Pipelines, una introducción a DSPy, una herramienta de Databricks, para construir procesos en los que los propios LLMs ayudan a escribir los prompts.
  5. Just Talk To It – the no-bs Way of Agentic Engineering, sobre el estado del arte en la programación usando agentes a fecha de hoy. La guía más pro que he leído al respecto.

Unas cuantas notas sobre probabilidad

  • Monty Hall and generative modeling: Drawing the tree is the most important step: Un artículo que invita a pensar los problemas de probabilidad en términos generativos, en cómo se obtienen los resultados, ilustrándolo con el ejemplo clásico del problema de Monty Hall: en lugar de buscar directamente una respuesta, es conveniente dibujar el árbol de probabilidad para aclarar las suposiciones sobre cómo se generan los datos (o decisiones).
  • Why probability probably doesn’t exist (but it is useful to act like it does): Abunda sobre la vieja y manida cuestión sobre si la probabilidad existe objetivamente. Pero esquiva el meollo de la cuestión y se queda en que, como concepto, es extremadamente útil como herramienta para comprender y estudiar el mundo. Incluso si dudamos de la existencia real de la probabilidad, argumenta que es conveniente actuar como si existiera.
  • Yes, your single vote really can make a difference! (in Canada): Se refiere a un caso real ocurrido en Canadá en el que un distrito electoral fue decidido por un solo voto. Es la anécdota que algunos querrán esgrimir contra la categoría de la irracionalidad del voto individual.
  • En Distribution of correlation y en Is the skewness of the distribution of the empirical correlation coefficient asymptotically proportional to the correlation? se analiza un mismo problema, el de la distribución del coeficiente de correlación. Si se toman muestras con una correlación real predefinida y fija $\rho$, se obtiene una distribución asimétrica (necesariamente), cuya asimetría crece con la correlación $\rho$. Cuando las distribuciones son normales, existe solución analítica, pero incluso en ese caso parece más razonable simular.
  • Matt Levine cuenta una historia muy instructiva sobre lanzamientos de monedas en el mundo real:
    1. Entrevistaban a alguien para un trabajo en un hedge fund y le hicieron estudiar las matemáticas (esperanza, desviación estándar) de 1000 lanzamientos de monedas.
    2. Una vez hechos los cálculos, le preguntaron si aceptaría participar en un juego en el que ganaría $0.5 + \epsilon$ de tirar una moneda y que saliese cara.
    3. El tipo dijo que sí.
    4. El entrevistador le contestó: “no, respuesta incorrecta; si te lo ofrecemos, no deberías aceptarlo: tenemos un tipo ahí abajo que saca un 55% de caras”.

Unas cuantas notas sobre LLMs

  • What Is Man, That Thou Are Mindful Of Him? es un texto satírico en el que se le da la vuelta a los argumentos que se hacen contra la inteligencia de los LLMs y volviéndolos contra los errores de razonamiento que cometemos tan frecuentemente los humanos.
  • Why AI systems might never be secure discute la “tríada letal” (exposición a datos externos, acceso a información privada y capacidad de actuar externamente) que hace de los agentes a los que se confieren las anteriores facultades sistemas intrínsecamente inseguros.
  • En los materiales del curso Stanford CS221 Autumn 2025 de la U. de Stanford, se puede encontrar el párrafo siguiente:

¡Aprende las operaciones básicas de NumPy con un tutor de IA! Usa un chatbot (p.e., ChatGPT, Claude, Gemini o Stanford AI Playground) para aprender por ti mismo cómo realizar operaciones vectoriales y matriciales básicas con NumPy. Los tutores de IA pueden construir hoy en día tutoriales interactivos excepcionalmente buenos y este año, en CS221, estamos investigando cómo pueden ayudarte a aprender los fundamentos más interactivamente que a través de los ejercicios estáticos clásicos.

Unas cuantas notas sobre estadística

Uno de los metaprincipios de la construcción de modelos estadísticos es que la calidad de los modelos es función de la cantidad de información que hay en los datos de entrenamiento. No existe el bootstrap en el sentido etimológico del término: no puede uno levantarse en el aire tirando hacia arriba de los cordones de los zapatos. Pero al hilo de una noticia reciente, Gelman discute si añadir ruido a los datos permite reducir el sobreajuste. Además, en la discusión al respecto, alguien cita el artículo de 1995 Training with Noise is Equivalent to Tikhonov Regularization, una especie de penalización en el tamaño de los coeficientes al modo de la regresión ridge.

Unas cuantas notas sobre tecnología

Hoy traigo a la atención de mis escasísimos pero selectos lectores una serie de notas que he recopilado en los últimos tiempos porque han llamado mi atención y que he arrejuntado alrededor de la genérica etiqueta de “tecnología”.

  • Una selección de diez librerías de Python para la creación de UIs. Una vez construí una aplicación de Android nativa que mostraba un dashboard en un móvil viejo 24/7. Sudé tinta. Hoy, casi seguro, lo haría en una fracción del tiempo.
  • En Extrapolating quantum factoring se cuenta cómo en 2001 un ordenador cuántico podía factorizar el número 15 y, en 2012, el 21. Luego extrapola, pero eso es lo de menos.
  • Ahora que está de moda medir superficies en “campos de fútbol” no sorprenderá tanto que se utilicen los “litros de agua hirviendo” como indicador de la fortaleza de una clave criptográfica.
  • The Electrotech Revolution: Some insights into a new way of thinking about the transition muestra una visión optimista del futuro en el que la energía es abundante y barata. La parte más interesante es esa en la que se discute cuánta de la llamada energía primaria actual acaba realmente creando trabajo útil (en lugar de, por ejemplo, calor disipado tontamente en la atmósfera).
  • The beauty of batteries es otro artículo optimista que discute cómo el despliegue masivo de baterías puede solucionar muchos de los problemas de nuestros sistemas de distribución eléctrica. Por ejemplo, una estación de energía renovable —y, por lo tanto, de generación irregular— remota necesitaría una conexión eléctrica de menor capacidad (y, por lo tanto mucho más económica) si dispusiese de baterías que le permitiesen evacuar la energía de manera constante a lo largo del día. Muchas ampliaciones de capacidad en determinadas líneas podrían evitarse si, con el concurso de las baterías, la energía pudiera distribuirse de manera mucho más homogénea a lo largo del tiempo. En términos estadísticos, las baterías son dispositivos que transforman los extremos en medias.
  • Tras la electricidad, el agua. How Does the US Use Water? nos habla de esa infraestructura y tecnología que tantas veces damos simplemente por supuesto y en la que apenas paramos mientes.

Unas cuantas notas sobre ciencia de la mala

Cuando escribo sobre mala ciencia, es un clásico incluir artículos de Radiando, como ¿Cuánta radiación recibimos del 5G? Soy particularmente sensible al tema porque mi exvecino del sexto, un tal Bardasano, fue uno de los más prominentes defensores del “el móvil nos va a freír los sesos a todos” del reino. Se lo puede leer en acción en artículos como este.

Hablé aquí, hace ya casi dos años, de un estudio con 37 sujetos a los que —presuntamente, como se estila en la España constitucional— se les encogía el cerebro. Compartía aquella entrada etiqueta con esta: la de mala ciencia. Ahora, The Economist nos cuenta de manera no irónica How becoming a father shrinks your cerebrum glosando aquel mismo estudio. Tengo el indicador de Gell-Mann aceleradísimo.

Unas cuantas noticias sobre temas económicos

Todavía es prematuro ir preparando el epitafio de la máxima de Ockham. Pero ni los escépticos rechazan de entrada la idea de que los modelos grandes y complejos puedan producir mejores predicciones que los simples; solo sostienen que esto no tiene por qué ocurrir siempre.

Varias noticias sobre el mundo de los LLMs

  • En The Drugs Are Taking Hold, David Rosenthal discute la muy problemática rentabilidad futura del negocio de los LLMs. Usa la palabra burbuja doce veces.
  • Dynomight escribe un tanto apocalípticamente sobre la potencial capacidad de persuasión de los LLMs. No de los actuales sino de los mucho más inteligentes que se supone que llegarán en algún momento.
  • Este es un hilo en Reddit sobre las actividades más lucrativas para las que los participantes han usado los LLMs. Una de ellas, interactuar con compañías de seguros.
  • Salió Qwen-Image-Edit y, después, Nano Banana, que todo el mundo dice que es mejor. Aún no he jugado con ninguno de ellos.
  • Más sobre el impacto medioambiental de los LLMs. Esta vez, el de Gemini.
  • ¿Pueden los LLMs razonar y planificar? Hay indicios que hacen sospechar que, de hacerlo, lo hacen muy precariamente. Un indicio de ello es, por ejemplo, que generan tokens a la misma velocidad independientemente de la complejidad (en el sentido técnico, matemático, del término) de la tarea propuesta, cosa que es matemáticamente imposible.
  • Dicen que superwhisper es muy bueno para pasar de voz a texto.
  • En el blog de Andrew Gelman no son muy entusiastas de los LLMs. Sin embargo, acaban de publicar esto. Pronostico aggiornamento a corto plazo.
  • Simon Willison ha publicado una lista de algunas de las herramientas que ha creado con LLMs. También ha publicado este ejemplo bastante completo de un análisis de datos realizado a golpe de vibe.