Estadística

En defensa de Simón: variaciones diarias de la mortalidad

Qué cafres tenéis que ser para que tenga que salir yo —precisamente yo, que tantas cosas no buenas tengo para decir del buen hombre— en defensa de Simón. Tiene delito que de todo lo que se le pueda echar en cara os hayáis fijado en una intervención en la que os trataba de desasnar para que no le anduviéseis buscando tres pies a la varianza.

Es un tema que vengo tratando de antiguo en estas páginas y de ello dan fe:

¿Agregar antes de modelar?

El otro día me pasaron unos datos artificiales para poder probar el ajuste de cierto tipo de modelos. El autor de la simulación construyó tres conjuntos de pares (x,y) y luego los agregó (media de los y agrupando por x) antes de proporcionármelos.

¿Tiene sentido agregar antes de modelar? Incluso sin entrar en el problema del potencial número desigual de observaciones por punto (datos desbalanceados) o las heterogeneidades entre las distintas iteraciones (que nos llevaría al mundo de los modelos mixtos).

¿42.000 muertes por coronavirus? Una corrección de la heterogeneidad

Publica hoy (cuando escribo) El Confidencial el artículo 42.000 muertes por covid: un estudio eleva la mortalidad un 76% sobre la cifra oficial citando el Estudio del exceso de mortalidad motivado por pandemia de Covid-19 de unos ingenieros de la UPM que corrige al alza los números de MoMo.

El resumen es simple: MoMo no recoge todas las defunciones, solo las de los registros civiles informatizados. Aunque la cobertura sea del ~95% de la población española, hay diferencias grandes por CCAA (y aún más, aunque no haya cifras públicas al respecto, por provincia). Además, sucede casualmente que la cobertura es menor precisamente en las CCAA más afectadas. Ergo una regla de tres aplicada comunidad a comunidad, arroja necesariamente una estimación sustancialmente más elevada que las publicadas hasta la fecha.

Muestreo, sensibilidad y especificidad

El bloque de código

n_pop <- 47e6
prev <- .02
n_muestra <- 60e3

real_sensitivity <- .8
real_specificity <- .995

estimated_sensitivity <- .81
estimated_specificity <- .99

anuncia que vamos a hablar de:

  • un país con una población no muy distinta de la de España
  • que sufre una pandemia con una prevalencia del 2%
  • en el que se realiza una selección de unos 60k sujetos
  • para aplicárseles unas pruebas con una sensibilidad y especificidad que pueden o no ser las que anuncia su prospecto,

supongo que para que dentro de unos años, cuando ya a nadie le importe, se publiquen unos datos que han guardado celosamente unos señores que mucho antes nos habrán regalado unos artículos científicos sobre el tema — necesariamente mediocres y que nos tendremos que creer— cuya publicación está garantizada por el mero hecho de que solo ellos tienen los CSVs mientras que la gente verdaderamente capaz, no.

Consensus clustering

No hay nada tan corrosivo para la fe en el clústering que probar una y otra vez k-medias (por ejemplo) sobre los mismos datos y ver cómo los resultados cambian drásticamente de ejecución en ejecución.

Pero eso viene a ser, esencialmente, lo que hay detrás del consensus clústering (CC), una técnica que puede ser usada, entre otros fines, para determinar el número óptimo de grupos.

La idea fundamental de la cosa es que observaciones que merezcan ser agrupadas juntas lo serán muy frecuentemente aunque cambien ligeramente las condiciones iniciales (por ejemplo, se tome una submuestra de los datos o cambien las condiciones iniciales de k-medias, por ejemplo). Si uno altera esas condiciones iniciales repetidas veces puede contar la proporción de las veces que las observaciones i y j fueron emparejadas juntas y crear la correspondiente matriz (simétrica, para más señas) $latex C(i,j)$.

Regresión tradicional vs multinivel

Ayer se leía en Twitter que

Cabe preguntarse qué pasa si se analizan los mismos datos usando ambas técnicas. Obviamente, hay muchos tipos de datos y supongo que los resultados variarán según qué variante se utilice. Aquí voy a centrarme en unos donde hay medidas repetidas de un factor aleatorio. También voy a situarme en un contexto académico, en el que interesan más las estimaciones de los efectos fijos, que en uno más próximo a mi mundo, la consultoría, donde son más relevantes las estimaciones regularizadas de los efectos aleatorios.

Tengo cuenta en Hypermind

Acaban de notificarme que han aprobado mi cuenta en Hypermind. Hypermind es un mercado de predicciones cuyo funcionamiento está descrito aquí y aquí mejor que yo pudiera hacerlo.

Ya iré contando. En tanto, una imagen extraída de uno de los enlaces anteriores que vale por mil palabras:

MoMo: una documentación oficiosa

Estos días se habla de MoMo y por primera vez en quince años largos, el público está contemplando gráficas como

que resumen lo más jugoso del sistema. MoMo (de monitorización de la mortalidad) es un sistema desarrollado por el ISCIII para seguir en tiempo casi real la evolución de la mortalidad en España.

Utiliza como fuente de datos fundamental la procedente de los registros civiles informatizados, que son la práctica mayoría (aunque no todos: queda excluido ~5% de la población). Además, las defunciones tienen cierto retraso en la notificación, como ya he comentado aquí.

Spike and slab: otro método para seleccionar variables

Me sorprende ver todavía a gente utilizar técnicas stepwise para la selección de variables en modelos. Sobre todo, existiendo herramientas como elastic net o lasso.

Otra de las técnicas disponibles es la del spike and slab (de la que oí hablar, recuerdo, por primera vez en el artículo de Varian Big Data: New Tricks for Econometrics). Es una técnica de inspiración bayesiana en cuya versión más cruda se imponen sobre las variables del modelo de regresión prioris que son una mezcla de dos distribuciones:

10k regresiones truchas para que cada cual elija la que más le cuadre

¿Recordáis la época en que existía una monocausa omnicacoexplicativa? Era la desigualdad que, a través de inefables mecanismos, generaba todo tipo de calamidades: infelicidad, enfermedad, inestabilidad política, etc.

Tal se sostiene en, p.e., The Spirit Level: Why More Equal Societies Almost Always Do Better, un libro donde se argumenta alrededor de gráficas tales como

Sin embargo, otro librito, The Spirit Level Delusion, revisitó esas cuestiones poco después y se dio cuenta de que si en lugar de tomar los datos de la fuente A los tomaba de la B; que si en lugar de usar cifras del año tal se usaba las del año cual; si se incluía el país X que aquellos habían considerado y se sacaba el Y, que solo se representaba a sí mismo, uno obtenía cosas tales como