Estadística

Distancias (I): el planteamiento del problema

Me han pedido (vía Twitter) que desarrolle cosas que tengo por ahí desperdigadas (p.e., en las notas de esos cursos que ya no daré y puede que en algunas entradas viejunas de este blog) sobre distancias.

¿Por qué son importantes las distancias? Por un principio que no suele ser explicitado tanto como merece en ciencia de datos: si quieres saber algo sobre un sujeto, busca unos cuantos parecidos y razona sobre ellos.

Qué métodos estadísticos utilizar si el pan de tus hijos depende de que las p sean pequeñajas

Según Methods Matter: P-Hacking and Publication Bias in Causal Analysis in Economics, las variables instrumentales (para estas, en particular, véase esto) y las diferencias en diferencias:

Applying multiple approaches to over 21,000 hypothesis tests published in 25 leading economics journals we find that the extent of p-hacking and publication bias varies greatly by method. IV (and to a lesser extent DID) are particularly problematic.

Es curioso que se estudie también la regresión con discontinuidades y que no acabe en el podio. Sospecho que es tan cantosa que no pasa los filtros de los editores y revisores.

Intervalos de confianza y la velocidad de la luz

La interpretación puramente frecuentista de los intervalos de confianza es que el 95% de ellos contendrán el valor de interés en cuestión. Veamos qué nos cuenta al respecto la historia de la medición de la velocidad de la luz contemplada a través de la lectura de Determining the Speed of Light (1676-1983): An Internalist Study in the Sociology of Science primero en forma tabular (nota: en la fuente original hay una tabla más extensa de la que esta es resumen),

Comentarios varios sobre un artículo de El País sobre MOMO

[Esta entrada ha sido enmendado con respecto a cómo fue publicada originalmente por los motivos que abajo se indican.]

El artículo es El Instituto de Salud Carlos III subestima las muertes de la segunda ola y los comentarios, estos:

El artículo trata un tema conocido de muchos, la infraestimación que hace el actual sistema MOMO de los excesos de mortalidad y cuyos motivos comenté extensamente el otro día. Dice, muy acertadamente:

¿Modelos para ordenar datos?

Ayer leí este resumen de este artículo que propone y discute un algoritmo novedoso y basado en ciencia de datos para ordenar datos y hacerle la competencia a quicksort y demás. Reza y promete:

The results show that our approach yields an average 3.38x performance improvement over C++ STL sort, which is an optimized Quicksort hybrid, 1.49x improvement over sequential Radix Sort, and 5.54x improvement over a C++ implementation of Timsort, which is the default sorting function for Java and Python.

z-scores, p-scores y el problema de las áreas pequeñas

Uno de los problemas que encuentra uno al monitorizar series temporales en diversas escalas es la de encontrar una métrica de desviaciones de la normalidad (al menos en tanto que los sectores en los que trabajo no se pueblen de postmodernistas que comiencen a cuestionar qué es eso de la normalidad y a argumentar que si es un constructo tan injusto como inasequible) que cumpla una serie de requisitos:

  • El primero y fundamental, que detecte efectivamente desviaciones de la normalidad.
  • Que sea interpretable.
  • Que permita la comparación entre distintas series.

Estoy tentado a volver sobre el asunto de la mortalidad y de MOMO para ilustrarlo. Porque en proyectos de esa naturaleza hay que construir una métrica que nos diga si es igual de relevante (o de indicador de problemas subyacentes serios) un incremento de 20 defunciones en Madrid o de 2 en Teruel.

El "nowcast" de MOMO, por qué sobreestima en el año del coronavirus y qué pasará en los siguientes si no se remedia

Hablo de MOMO de nuevo. Esta vez por culpa de la sobreestimación de las defunciones esperadas:

¿Cómo estima MOMO las defunciones esperadas? Lo voy a explicar en tres pasos que se afinan secuencialmente.

Paso 1: Imaginemos que queremos realizar lo que algunos llaman el nowcast correspondiente al día de hoy, 18 de octubre de 2020 para alguna de las series que monitoriza MOMO. Podría tomar la mediana de los días 18 de octubre de los años 2019, 2018,… hasta, no sé, 2014.

"Introducción a la probabilidad y la estadística para científicos de datos": primera entrega

Acabo de colgar el primer par de capítulos de mi libro Introducción a la probabilidad y la estadística para científicos de datos. No voy a adelantar nada aquí que no esté contenido en la introducción a la obra (AKA la introducción de la introducción). Pero baste este adelanto:

Las peculiaridades de su público explican algunas de las páginas que siguen. Por ejemplo, en ellas no se encontrará ni rigor, ni ortodoxia ni autocompletitud.

Explicación de los scorings de "ciertos" modelos

Esta entrada la hago por petición popular y para rematar de alguna manera lo que incoé hace unos días. Seré breve hasta lo telegráfico:

  1. Tomo las observaciones con scorings más altos (en un árbol construido con ranger y cariño).
  2. Veo cuáles son los árboles que les asignan scorings más altos.
  3. Anoto las variables implicadas en las ramas por donde bajan las observaciones (1) en los árboles (2).
  4. Creo una matriz positiva: filas = casos, columnas = variables, valores = conteos.
  5. Y la descompongo (vía NMF). 6. Etc.

Es hasta paquetizable.