Estadística

No hagáis esto o se darán cuenta de que sois muy cutres

Lo que no hay que hacer nunca si no quieres que se enteren de que eres inmensamente cutre es escribir código en las líneas del siguiente seudocódigo:

m = model(y ~ a + b + c)
if (modelo.p_value(a) > .05)
    m = model(y ~ b + c)

¡No, no, no, no, NO!

La ley de la cerveza para pintar nubes (y su relación con el análisis de la supervivencia)

El otro día pregunté a en un grupo de amigos, físicos mayormente, si les sonaba de alguna esquinita teórica de la carrera en que apareciese alguna función de la forma

$$ x(t) = \exp\left(-\int_0^t f(x) dx\right)$$

y uno, que trabaja en el mundo del videojuego dio con la línea 401 del código que aparece aquí y que sirve para pintar las nubes hiperrealistas que aparecen en la misma página.

Es una aplicación de la ley de Beer en la que mis lectores más sofisticados reconocerán el estrecho vínculo con el análisis de la superviencia. En este caso, la que trata de sobrevivir es una intensidad luminosa que atraviesa diversos medios que la van atenuando. Al ser potencialmente heterogéneos, la función de supervivencia adquiere la forma

No leáis nada de lo que diga este inepto: no sabe por dónde le pega el aire

Hay gente que va dándoselas de nosequé y luego resulta que no sabe por dónde le pega el aire. Veámoslo hablando de análisis de la supervivencia:

En cualquier caso, con datos de esa naturaleza (isótopos radioactivos, enfermos de cáncer, etc.) no se informa la vida media sino, generalmente, la semivida. Es decir, cuánto tiempo pasa hasta que se liquida la mitad de una cohorte. En este caso, lo suyo sería estimar la semivida ponderada por importe.

Sobre la función de riesgo en el análisis de la supervivencia

Tienes una función de supervivencia

y piensas que es posible aproximarla usando segmentos de exponencial usando primero una rejilla gruesa,

y luego cada vez más fina,

hasta que sean indistinguibles.

Las distintas aproximaciones son

$$ \hat{S}(t) = \exp\left(-\sum_{i \le n} \lambda_i \Delta - \lambda_n (t - t_n)\right)$$

donde $latex n$ es el índice del intervalo que contiene a $latex t$ los $latex \lambda_i$ son los coeficientes en los segmentos de exponencial. Esa expresión que converge a

Análisis (bayesiano) de pruebas con sensibilidad/especificidad desconocida

Esto tiene que ver con lo del estudio ENECOVID, por supuesto.

Esto tiene que ver con los ajustes que hay que realizar en los resultados por la menos que perfecta sensibilidad y especificidad.

Porque no basta con lo que diga el prospecto de los kits chinos.

Por eso es recomendable leer Bayesian analysis of tests with unknown specificity and sensitivity.

Coda: Cuando era matemático y comencé a estudiar estadística, me llamaba mucho la atención (por no decir que me escandalizaba) la alegría con la que estimadores sujetos a error de un modelo se insertaban como verdad divina en otro. Que es lo que aparentemente se hace cuando el estimador puntual de sensibilidad y especificidad copipega tal cual en las fórmulas del ajuste.

Micromuertes y coronavirus

[Esta entrada abunda en la que escribí hace nueve años sobre las micromuertes y sin la cual no se entiende.]

El concepto de micromuerte sirve para anclar y comparar adecuadamente riesgos diminutos. De acuerdo con la entrada que referencio arriba, una micromuerte equivale al riesgo (recuérdese: ¡promedio!) de caminar 15 km o conducir 250. Pasar una noche en el hospital consume 75 de ellos (por riesgo de contagios que no tengan que ver con el motivo de ingreso) y dar a luz, alrededor de 100.

En defensa de Simón: variaciones diarias de la mortalidad

Qué cafres tenéis que ser para que tenga que salir yo —precisamente yo, que tantas cosas no buenas tengo para decir del buen hombre— en defensa de Simón. Tiene delito que de todo lo que se le pueda echar en cara os hayáis fijado en una intervención en la que os trataba de desasnar para que no le anduviéseis buscando tres pies a la varianza.

Es un tema que vengo tratando de antiguo en estas páginas y de ello dan fe:

¿Agregar antes de modelar?

El otro día me pasaron unos datos artificiales para poder probar el ajuste de cierto tipo de modelos. El autor de la simulación construyó tres conjuntos de pares (x,y) y luego los agregó (media de los y agrupando por x) antes de proporcionármelos.

¿Tiene sentido agregar antes de modelar? Incluso sin entrar en el problema del potencial número desigual de observaciones por punto (datos desbalanceados) o las heterogeneidades entre las distintas iteraciones (que nos llevaría al mundo de los modelos mixtos).