Estadística

El IPT y la paradoja de Simpson

El INE ha comenzado a publicar una nueva estadística, el IPT o índice de precios del trabajo. Su primera entrega ha sido glosada por la prensa en artículos como este o este.

Es imperativo leer la nota metodológica asociada (resumida aquí y detallada en un enlace que contiene) para darse cuenta de los problemas de interpretación que acompañan al índice.

Se parece al IPC en el sentido que promedia el peso de cada salario (precio en el IPC) por el porcentaje de gente que lo gana (o que se compra en la canasta bienes y servicios del IPC). Son dos las cosas que pueden cambiar a la vez, por lo que la interpretación de los movimientos del índice pueden tener una doble interpretación.

Detrás de la detección de anomalías en series temporales

Por azares, me ha tocado lidiar con eso de la detección de anomalías. Que es un problema que tiene que ver con dónde colocar las marcas azules en

anomaly_detection

El anterior es el gráfico construido con los datos de ejemplo del paquete AnomalyDetection. De hecho, así:

library(AnomalyDetection)

data(raw_data)
res <- AnomalyDetectionTs(raw_data,
    max_anoms=0.02,
    direction='both', plot=TRUE)
res$plot

Aparentemente, AnomalyDetectionTs hace lo que cabría sospechar. Primero, una descomposición de la serie temporal, tal como

Pesadumbre e incertidumbre desencadenadas

Hoy escribo afectado por un derrame de pesadumbre. Pero esa es solo una opinión que igual no importa nadie.

Estas del 8 de noviembre han sido las elecciones en que menos y que más caso he hecho de las encuestas electorales. Cansado del cada vez más monótono ciclo de que

  • se publican encuestas electorales
  • llegan las elecciones y el resultado no se parece en nada a lo dibujado por ellas y
  • se reitera el mismo blablablá (en latín se dice excusatio non petita) que unos meses antes

he decidido esta vez dejar de prestar atención a algo que, se ha visto, no ha sido sino ruido. Les he hecho caso, sin embargo, al inclinarme a comprar con ánimo 100% especulativo unas accioncillas que hoy valen el 4% menos que ayer y el 2% menos que cuando las compré. ¡Contento me tienen los científicos de opinión pública y sus benditas batas blancas!

¿Seis sigmas? Porque a mí solo me llegan 4.5 sigmas

Seis sigma es un conjunto de métodos y prácticas para mejorar la calidad de los procesos industriales. Su nombre está inspirado por la distribución normal: aspira a que la tasa de errores (por ejemplo, piezas defectuosas producidas por una planta) sea pnorm(-6).

six_sigma_definition_standard_deviations

Pero pnorm(-6) es 9.8e-10 (uno por millardo, aproximadamente), mientras que, según la Wikipedia, que siempre tiene la razón, la aspiración del Seis Sigma es la de alcanzar 3.4 defective features per million opportunities. Que es bastante (trescientas veces) superior.

Las dos culturas, con comentarios de 2016

En 2012 mencioné de pasada ese artículo de Breiman al que hace referencia el título. Estaba bien, tenía su gracia.

leo_breiman

Lo he visto utilizar recientemente como punto de partida en discusiones sobre lo distinto o no que puedan ser la ciencia de datos y la estadística. Y espero que, efectivamente, se haya usado como punto de partida y no como otra cosa porque el artículo tiene 15 años (cerrad los ojos y pensad dónde estabais en 2001 y cómo era el mundo entonces).

El principio de información

Tramontando el recetariado, llegamos a los principios. Y el más útil de todos ellos es el de la información (o cantidad de información).

(Sí, de un tiempo a esta parte busco la palabra información por doquier y presto mucha atención a los párrafos que la encierran; anoche, por ejemplo, encontré un capitulito titulado The Value of Perfect Information que vale más que todo Schubert; claro, que Schubert todavía cumple la función de proporcionar seudoplacer intelectual a mentes blandas y refractarias al concepto del valor de la información perfecta).

Recetas y principios

En algunas de las últimas charlas (de ML) a las que he asistido se han enumerado recetas con las que tratar de resolver distintos problemas. Pero no han explicado cuándo ni por qué es conveniente aplicarlas. Incluso cuando se han presentado dos y hasta tres recetas para el mismo problema.

receta

Me consta que parte de la audiencia quedó desconcertada y falta de algo más. ¿Tal vez una receta para aplicar recetas? ¿De una metarreceta?

Barómetros del CIS con R

El CIS realiza barómetros todos los meses menos uno. Pasado un tiempo (es octubre y el último publicado es de julio) coloca los microdatos en su banco de datos.

Aparte de ficheros .pdf que lo explican todo (pero que no dejan de ser .pdf), publica dos ficheros. Uno de datos en ancho fijo (prefijo DA) y otro con código SPSS (prefijo ES) con los consabidos (¿lo son? ¡felicidades si no!) encabezados DATA LIST, VARIABLE LABELS, VALUE LABELS, y MISSING VALUES.