probabilidad

¿Qué números admiten la distribución de Benford?

[Esta entrada es casi una caracterización de lo que promete el título. Quitarle el casi sería prolijo. Pero creo que casi, casi, se adivina de lo que sigue.] Siempre que hablamos de distribuciones de probabilidad, somos muy conscientes de los requisitos y condiciones bajo las que aplican. Con una excepción: al hablar del manido Benford. En tales casos se suele argumentar de una manera un tanto mística. Y doblemente mística, como consecuencia, cuando toca explicar por qué en ciertos datos concretos no aplica.

¿Cómo asignar probabilidades? Simetría y universalidad

En los minutos 18 y unos pocos de los siguientes de se plantea el problema de cómo asignar probabilidades a eventos y el conferenciante, Martin Hairer, discute (¿con ánimo de exhaustividad?) dos: simetría y universalidad. _[Nota: la discusión es paralela y muy similar a una que aparece en una sección aún no publicada de mi libro de probabilidad y estadística. La relación causal entre ambos hechos es bastante problemática.

Esto no es práctico, pero sí bonito; bonito, además, de esa forma inasequible a la chusma

Va de muestrear los números $latex 1, \dots, n$ que tienen asignadas probabilidades $latex p_1, \dots, p_n$. Una manera muy impráctica (en R, basta usar sample) y nada intuitiva de hacerlo es recurriendo a la distribución de Gumbel: library(evd) pes <- runif(5) pes <- pes / sum(pes) gammas <- log(pes) + 2 x <- rgumbel(length(pes)) muestra <- which.max(gammas + x) O, en masa, aplicando get_samples <- function(n){ replicate(n, { x <- rgumbel(length(pes)) which.

La pregunta a la que el TCL es una muy particular (y mucho menos importante de lo que habitualmente se cree) respuesta

El TCL (teorema central del límite) ayuda a responder una pregunta en algunos casos concretos. Pero a veces se nos olvida que lo importante es la pregunta y sus muchas otras potenciales respuestas. La pregunta es: ¿qué distribución, si alguna, es razonable suponer que puedan tener mis datos? El TCL permite responder ¡normal! en algunos casos singulares que fueron más importantes hace tiempo que hoy en día. Pero llama la atención la importancia (medida, si se quiere, en número de páginas dedicadas a ello en los textos introductorios a la teoría de la probabilidad y la estadística) que se le otorga a esa particularísima respuesta y a su justificación y el poco al de tratar de proporcionar herramientas para tratar de dar una respuesta más o menos coherente a la pregunta general.

Cuidado con la aleatoriedad "pochola"

Abundo sobre mi entrada del otro día. Usando números aleatorios hirsutos, n <- 200 x <- runif(n) plot(cumsum(x - .5), type = "l") produce mientras que library(randtoolbox) s <- sobol(n, 1, scrambling = 3) plot(cumsum(s - .5), type = "l") genera que tiene un cariz totalmente distinto.

¿Cómo pensar en la probabilidad de un evento?

[Esta entrada lo es, además de por su propio mérito, en preparación de la que habrá de ocurrir mañana o pasado.] Así: My father, Leonard Jimmie Savage, was an early advocate of subjective probability. He encouraged me from a young age to think of the probability of an event as the amount I would pay for a gamble that would pay $100 if the event occurred. Sam Savage, 2004 (fuente)

Movimientos brownianos y barreras

En Hypermind se está planteando esta cuestión: A día de hoy, el S&P 500 está en 2830. La predicción está y viene estando aproximadamente alrededor de la regla de tres: $$ \frac{s - 2000}{3000 - 2000} \times 100%$$ donde $latex s$ es la cotización del índice. Y aquí vienen dos preguntas/ejercicios para mis lectores: Suponiendo que el S&P 500 se comportase como un movimiento browniano (sin drift), ¿sería precisa la regla anterior?

"Para razonar rigurosamente bajo incertidumbre hay que recurrir al lenguaje de la probabilidad"

Así arranca este artículo, que presenta una extensión de XGBoost para predicciones probabilísticas. Es decir, un paquete que promete no solo una estimación del valor central de la predicción sino de su distribución. La versión equivalente de lo anterior en el mundo de los random forests está descrito aquí, disponible aquí y mucho me temo que muy pronto voy a poder contar por aquí si está a la altura de las expectativas.

Una versión aún más sencilla

… que la de “Algoritmos” y acatarrantes definiciones de “justicia”. Que es casi una versión de la anterior reduciendo la varianza de las betas. Las dos poblaciones de interés tienen una tasa de probabilidad (o de riesgo, en la terminología del artículo original) de .4 y .6 respectivamente. Aproximadamente el 40% de los primeros y el 60% de los segundos tienen y = 1. El modelo (el algoritmo) es perfecto y asigna a los integrantes del primer grupo un scoring de .

"Algoritmos" y acatarrantes definiciones de "justicia"

Lee Justicia: los límites de la inteligencia artificial… y humana y cuando acabes, te propongo un pequeño experimento probabilístico. Por referencia, reproduzco aquí los criterios de justicia del artículo que glosa el que enlazo: Centrémonos en (B), sabiendo que, por simetría, lo que cuento se aplica también a (C). Supongamos que tenemos dos grupos, cada uno de ellos de n <- 1000000 personas para estar en las asíntotas que aman los frecuentistas.

Curvas de equiprobabilidad de la t bivariada

El otro día me entretuve pintando curvas de equiprobabilidad de la distribución de Cauchy (nota: debería haberlas llamado cuasicuasiconvexas en lugar de cuasiconvexas en su día). Pero la t es una_ cuerda tendida entre _la Cauchy y la normal y es instructivo echarles un vistazo a las curvas de equiprobabilidad según crecen los grados de libertad. Sobre todo, porque arrojan más información sobre la manera y el sentido en el que la t converge a la normal.

La densidad de una Cauchy bivariada es cuasiconvexa

Primero, las curvas de nivel: x <- seq(-50, 50, length.out = 1000) tmp <- expand.grid(x = x, y = x) tmp$z <- log(dcauchy(tmp$x) * dcauchy(tmp$y)) ggplot(tmp, aes(x = x, y = y, z = z)) + stat_contour() Lo de la cuasiconvexidad está contado aquí. Las consecuencias estadísticas y probabilísticas, para otro rato.

La probabilidad, ¿algo subjetivo?

Esta entrada es una contestación a Pregunta: ¿qué opinaríais si os dijese que la probabilidad es algo subjetivo construido en base a nuestro conocimiento y que realmente solo existe a nivel subatómico? Os lo creáis o no, es una discusión que suelo tener con mis alumn@s y que he recordado leyendo a Spiegelhalter — BayesAna 🏳️‍🌈🧚🏼‍♂️ (@AnaBayes) January 4, 2020 I. Habrá quien sostenga que la geometría (plana, euclídea, por antonomasia) es subjetiva, que es una construcción de la mente, de cada mente.