Problemas de los promedios de encuestas electorales

El otro día, al hablar de las encuestas electorales y su relación con la predicción electoral, me referí tangencialmente —y, ahora que lo pienso, un tanto confusamente— a los promedios de encuestas. Vine a decir que los promedios de encuestas como

de la Wikipedia constituyen una primera aproximación —burda— al problema de la predicción electoral cuando, realmente, deberían considerarse otro nowcast.

Estos promedios de encuestas deberían ser más fiables que las encuestas particulares, aunque solo sea porque utilizan más información. Sin embargo, están expuestas a una serie de problemas como los que se anuncian/denuncian aquí.

Nivel de estudios: padres vs hijos

Navegando —y no por capricho— por esa gran pila de estiércol que es la parte visible de la estadística pública española (es decir, tablas, series, etc. publicados por distintos organismos públicos) he tropezado con unos datos que puede que interesen a alguien.

Proceden de la Encuesta de Características Esenciales de la Población y las Viviendas del año 2021 y se refieren a la comparación del nivel educativo de padres e hijos. Oficialmente se refiere a personas de 16 años o más, por lo que a muchos de los hijos no les habrá dado tiempo de ponerse al nivel de los padres, aunque también es posible obtener datos para determinadas franjas etarias.

Encuestas vs predicciones electorales

I.

Imaginemos que estamos viendo un partido de fútbol en la tele. Arriba, a la izquierda, hay un par de cifras: es el marcador que nos dice cómo va el partido.

En un mundo paralelo, en lugar del resultado provisional (p.e., 0-0 al comenzar el partido), el marcador podría mostrar la predicción del resultado al acabar el encuentro. Podría suceder que en el minuto cero indicase algo así como 3-2 si tal fuese la mejor estimación posible del resultado final.

Buscándole las cosquillas al "Indicador Multidimensional de Calidad de Vida"

El IMCV es esto. (Brevemente: un indicador experimental del INE que combina datos de varias encuestas, las agrega con unos pesos y produce unos números que permiten comparar CCAA entre sí y a lo largo del tiempo).

Una característica muy amena del IMCV es que permite recalcular en índice con pesos ad hoc aquí.

Con los pesos originales, el indicador (de 2021) queda así:

Por probar algo, he puesto a cero todos los pesos menos el que se refiere, nada menos, que a Ocio y relaciones sociales por ver qué pasa:

Acciones "disparadas" por chatGPT (y sus verdaderos peligros)

Para la inmensa mayoría, chatGPT es lo que su nombre indica: un chat. Le preguntas y te responde. Pero lo siguiente es un ejemplo de algo perfectamente factible hoy.

  1. Creas un programa que monitorea tu bandeja de entrada.
  2. Cuando llega un correo nuevo, le pasa el texto a chatGTP (versión API) con un prompt adecuado.
  3. Dependiendo de la respuesta, se toma una determinada acción. Por ejemplo, enviar un aviso vía Telegram.

Por ejemplo, el propmt podría ser algo así como:

Siete problemas matemáticos que plantea el "deep learning"

La emergencia (y el éxito) del llamado aprendizaje profundo (deep learning) plantea innumerables cuestiones matemáticas. Algunos algoritmos funcionan (y otros muchos que han quedado en los cajones no, obviamente) y no está muy claro por qué. He aquí una lista de siete problemas que el aprendizaje profundo ha colocado enfrente de la comunidad matemática:

  1. ¿Cuál es el papel de la profundidad en las redes neuronales? (En el fondo, una red neuronal no deja de ser una función que aproxima otra desconocida; en matemáticas abundan los procedimientos y resultados para aproximaciones planas (p.e., combinaciones lineales de funciones); pero la composición de funciones…)
  2. ¿Qué aspectos de la arquitectura de una red neuronal impactan en su desempeño? (Porque, admitámoslo, los expertos en redes neuronales, en lo concerniente a la arquitectura, no son muy distintos de aquellos artesanos del Pacífico Sur).
  3. ¿Por qué el SGD converge a mínimos locales buenos a pesar de la no-convexidad del problema de optimización? (¡Ah! En este punto, la intriga se mezcla con la envidia: no sabéis lo difícil que es optimizar funciones no lineales más o menos genéricas y las horas que he invertido en ese tipo de problemas.)
  4. ¿Por qué no sobreentrenan las redes neuronales? (¿No lo hacen?)
  5. ¿Por qué funcionan bien en altas dimensiones?
  6. ¿Qué tipo de patrones de los datos son susceptibles de ser aprendidos por las redes neuronales?
  7. ¿Podrían llegar las redes neuronales a reemplazar a los algoritmos teóricos y numéricos especializados que se utilizan en las aplicaciones de las matemáticas?

Estas cuestiones —obviamente, sin soluciones— junto con alguna discusión adicional más, se discuten menos brevemente que aquí en este enlace.

Estadísticas creativas: el "peso del paro"

Mirad que trato de abstraerme del mundanal ruido y de las marcianadas de tirios y troyanos. Me he comprado una segunda EPS32, le he instalado Micropython y solo aspiro a que se me deje en paz.

Pero como me ronda en la cabeza escribir algún día cosas en serio sobre sofística estadística, no he podido dejar de lado mis otros entretenimientos un rato para comentar esto:

Los dos gráficos que lo acompañan son:

¿Dejar morir pxR?

R

¿Dejar morir pxR? He ahí la cuestión.

pxR es un paquete de R en CRAN en el que figuro como mantenedor. Es un subproducto de mis antiguas inclinaciones hacia el procomún. Me fue útil para alguna que otra actividad inútil.

El paquete sirve para importar a R datos en el formato Px. Este formato fue concebido en una época en la que aún no existían cosas mejores y mejor pensadas —XML, JSON, datos tidy, etc.—, los ficheros se intercambiaban en disquette (¿se escribía así? ya no recuerdo bien) y casi todo el mundo usaba Windows. Era lo que había y hay que entenderlo; de otra manera, no se comprende casi ninguna de las decisiones de diseño del formato. Que, por otra parte, parece basado en la siguiente pareja de principios funcionales:

Código para resolver "wordles" en español

Este soy yo hoy mismo:

Este es mi script:

carlos@tiramisu:~$ wordle señor
Intento 1 -> seria

   Quedan 2 opciones.
   Las más populares son:
     señor : 228.79
     segur : 0.23

Intento 2 -> señor

Solución en 2 intentos: señor

Mi pequeño script tiende a ganarme. Lo cual me satisface enormemente.

En caso de que a alguien le interese, puede bajárselo de aquí. Existen dos versiones que implementan el mismo algoritmo, una en R y otra en Python. Las instrucciones de uso están en el repo.

¿Qué distribución usar? ¡Examina el proceso generativo!

Tenía pendiente contar algo sobre el (oscuro) artículo A Brief History of Generative Models for Power Law and Lognormal Distributions. Tiene una cosa buena y una mala.

La buena —y más interesante— es que ilustra cómo pensar sobre la conveniencia de usar una distribución determinada a la hora de modelar un fenómeno concreto. Uno de los procedimientos más fértiles consiste en indagar sobre el proceso generativo que conduce a la distribución en cuestión. Así, usamos la distribución normal porque sabemos que la agregación de pequeños errores etc.; o la Poisson porque tenemos una población muy grande cuyos sujetos tiran monedas al aire etc.; etc.