To IRLS or not to IRLS

A veces tomas un artículo de vaya uno a saber qué disciplina, sismología, p.e., y no dejas de pensar: los métodos estadísticos que usa esta gente son de hace 50 años. Luego cabe preguntarse: ¿pasará lo mismo en estadística con respecto a otras disciplinas?

Por razones que no vienen al caso, me he visto en la tesitura de tener que encontrar mínimos de funciones que podrían cuasicatalogarse como de mínimos cuadrados no lineales. Y por algún motivo, pareciere que no hubiese en el mundo un algoritmo de ajuste que no fuese IRLS. Que tiene una gran tradición en estadística; es, de hecho, la base de la optimización propuesta por Nelder y McCullagh en 1972.

Platón en el estercolero

Hoy nos han hablado unos matemáticos. Sí, de esos cuyas distribuciones extremales son Pareto porque yo lo valgo.

Alguien, que no yo, ha osado preguntar qué tal ajustaban los modelos. La respuesta, perifrástica nivel Yes, Minister, se resumía en un nos encantaría haber tenido ocasión de comprobarlo.

Efectivamente, las probabilidades son subjetivas en tanto que financiadas por la Fundación La Caixa.

Curvas de equiprobabilidad de la t bivariada

El otro día me entretuve pintando curvas de equiprobabilidad de la distribución de Cauchy (nota: debería haberlas llamado cuasicuasiconvexas en lugar de cuasiconvexas en su día). Pero la t es una_ cuerda tendida entre _la Cauchy y la normal y es instructivo echarles un vistazo a las curvas de equiprobabilidad según crecen los grados de libertad. Sobre todo, porque arrojan más información sobre la manera y el sentido en el que la t converge a la normal. Son:

Análisis estadístico de mezclas

No es algo que ocurra habitualmente. Creo que conozco a alguien que me dijo que lo tuvo que hacer una vez. Pero podría ocurrir en algún momento que tuvieses que analizar mezclas, es decir, situaciones experimentales en las que lo importante es la proporción de ciertos ingredientes (con la restricción obvia de que dichas proporciones suman la unidad).

Para más datos, Mixture Experiments in R Using mixexp, que describe el paquete de R mixexp.

La probabilidad de que el parámetro esté en el intervalo de confianza es .95

Si dices lo anterior, corres el riesgo de que un estadístico gruñón frunza mucho el ceño.

Hace muchos, muchos años, las gentes ávidas de saber más acudieron al tabernáculo donde se congregaban los sapientísimos estadísticos frecuentistas implorándoles una herramienta con que estimar el error de sus estimaciones puntuales. Estos cavilaron luengamente y décadas después entregaron a los representantes de los hombres, reunidos en el ágora, unas tablas de piedra que tenían grabadas a cincel la teoría de los intervalos de confianza. Pero, les advirtieron, los intervalos de confianza no son lo que vosotros queréis sino otra cosa y a quien ose interpretarlos torcidamente le pasará lo que a aquella señora que comió la manzana inadecuada: será expulsado del paraíso de la teoría como Dios manda.

¿Lineal o logística?

Hay cosas tan obvias que ni se plantea la alternativa. Pero luego va R. Gomila y escribe Logistic or Linear? Estimating Causal Effects of Treatments on Binary Outcomes Using Regression Analysis que se resume en lo siguiente: cuando te interese la explicación y no la predicción, aunque tu y sea binaria, usa regresión lineal y pasa de la logística.

Nota: La sección 4.2 de An Introduction to Statistical Learning de se titula precisamente Why Not Linear Regression?

WoE,... pero ¿y las interacciones?

Esto del WoE he tenido que aplicarlo (de manera no estándar, además) en alguna ocasión. Pero forzado por las circunstancias (que, concretamente, eran el misteriosísimo y no siempre conforme a lo que cabría esperar que hace ranger de las variables categóricas). Digamos que a veces toca, pero no es tampoco algo de lo que enorgullecerse.

Pero cuando escucho o leo a los apologetas del WoE, siempre me pregunto mucho por lo que tendrán que decir sobre la pérdida de información en términos abstractos y, en otros más concretos, qué ocurre con las interacciones.

Sobre la normalización de las direcciones postales

Lo de las direcciones postales es un caos. Trabajar con ellas, una tortura. Y cualquier proyecto de ciencia de datos que las emplee se convierte en la n-ésima reinvención de la rueda: normalización y tal.

Cuando todo debería ser más sencillo. Cada portal en España tiene asociado un número de policía, un identificador numérico único. Independientemente de que quienes lo habiten se refieran a él de formas variopintas, vernaculares y, en definitiva, desnormalizadas y desestandarizadas hasta pedir basta.