ABC

ABC significa, entre otras cosas, approximate bayesian computation. Por lo que parece, consiste en calcular $latex P(\theta ,|, \text{datos})$ por el tradicional y directo método del rechazo. Es decir:

  • Planteas un modelo generativo, con sus prioris y todo.
  • Simulas casos, casos y casos.
  • Te quedas con los que cumplen un criterio de aceptación.

La distribución empírica de los parámetros en el subconjunto de los casos aceptados representa, en los libros está escrito, la distribución a posteriori. Sin MCMC ni historias.

Un caso en el que falla la máxima verosimilitud

El caso es el siguiente: alguien hace la colada y al ir a tender, observa que los 11 primeros calcetines que saca de la lavadora son distintos. El problema consiste en estimar el número de pares de calcetines en la lavadora.

La solución por máxima verosimilitud es infinitos calcetines. En efecto, cuantos más calcetines hubiese en la lavadora, más probable es obtener 11 de ellos distintos. Y la respuesta es tremendamente insatisfactoria.

¿Lo publico y nos echamos unas risas todos?

Estos días, haciendo limpieza de cajones, estanterías y directorios, he dado con un documentito que se me quedó accidentalmente pegado al disco duro hace muchos, muchos años.

Es la documentación metodológica y técnica, firmada por una consultora de postín, de los algoritmos de cálculo de la probabilidad de impago en una de esas entidades financieras que quebraron en su día con enorme estrépito (y perjuicio para el erario público, sea dicho de paso).

Mortalidad en carretera (contada de una manera distinta)

Con motivo de fin de año se ha hablado de fallecidos en accidentes de tráfico como por ejemplo en El Mundo o en El País. Y sí, parece que el número observado de muertos ha aumentado.

Lo cual es mucho menos relevante de lo que se da a entender. Si tiras una moneda al aire 100 veces y sacas 48 caras y luego repites el experimento, podrías sacar 53 (y habría aumentado el número observado de caras) o 45 (y habría disminuido). Lo relevante es si ha cambiado o no la probabilidad de cara de la moneda. De lo cual, y volviendo al caso de la siniestralidad, ya me ocupé en su día.

Recodificación de variables categóricas de muchos niveles: ¡ayuda!

Una vez escribí al respecto. Y cuanto más lo repienso y lo reeleo, menos clara tengo mi interpretación. De hecho, estoy planteándome retractar esa entrada.

Y reconozco que llevo tiempo buscando en ratos libres algún artículo serio (no extraído del recetario de algún script kiddie de Kaggle) que justifique el uso del procedimiento. Es decir, que lo eleve de técnica a categoría. Sin éxito.

He hecho probaturas y experimentos mentales en casos extremos (p.e., cuando todos los niveles de la variable categórica son distintos, cuando son iguales, etc.) con los decepcionantes resultados que cabe esperar. Lo cual contradice las presuntas virtudes casi taumatúrgicas del procedimiento.

Preludio (de más por venir)

El preludio esto:

Que tiene el interés y la interpretación (muchas de ellas, como se podrá barruntar más abajo, de corte técnico) que cada uno quiera darle.

La cuestión es que he ocerreado todas las portadas de El País y puedo buscar en el texto (adviértase la cursiva) resultante. Creo contar con una voluntaria para construir una aplicación web similar a la de los n-gramas de Google.

Igual subo los datos a algún sitio en algún momento. En tanto, si alguien los quiere, que me los pida.

La ilusión de progreso (en problemas de clasificación)

David Hand, en Classifier Technology and the Illusion of Progress, resume el asunto así:

A great many tools have been developed for supervised classification, ranging from early methods such as linear discriminant analysis through to modern developments such as neural networks and support vector machines. A large number of comparative studies have been conducted in attempts to establish the relative superiority of these methods. This paper argues that these comparisons often fail to take into account important aspects of real problems, so that the apparent superiority of more sophisticated methods may be something of an illusion. In particular, simple methods typically yield performance almost as good as more sophisticated methods, to the extent that the difference in performance may be swamped by other sources of uncertainty that generally are not considered in the classical supervised classification paradigm.

¿Lo racional? Que jueguen a la lotería los demás

Yo mismo, lo confieso, he sido uno de los cenizos participantes en esa habitual letanía prenavideña sobre lo conveniente o no de comprar lotería en las que tanto se apela a la racionalidad. En una u otra dirección. Véase, cosecha de la campaña del año pasado, esto, esto, o, más tangencialmente, esto (y sus enlaces).

Cuando lo verdaderamente racional es hacer por que compren lotería, precisamente, los demás.

El fraude de Lemús aún adorna las memorias del CSIC

Un tal Lemús, del CSIC, hizo avanzar su carrera científica inventando datos hasta que lo pillaron. Hasta 13 retracciones lleva el pillo. En particular esta.

Que es relevante porque aún adorna la memoria del CSIC de 2010 (pág. 256) y suma a la lista de méritos (sección de publicaciones de alto impacto) de la institución en tal año.

¿Nadie edita ese tipo de cosas? ¿Ni por principios básicos de higiene?

Redes sin neutralidad de red que funcionan tan ricamente

Existen muchas redes de distribución. La red vial es una de ellas. La de pan, leche y huevos, otra. La de electricidad. La telefónica. Y la de paquetes de datos internet.

Prácticamente ninguna se rige por principios de neutralidad de red. En la viaria, no es solo que los vehículos no puedan circular por donde y cuando quieran, sino que existen restricciones como el carril bus, el Bus Vao, lo que se perpetra diariamente en la Gran Vía de Madrid durante el periodo navideño, etc. y se aplican excepciones para los vehículos eléctricos y los conducidos por gentes con habilidades distintas de otros o como quiera que se los denomine el año en que leas esto. Y se hace para que el tráfico sea más fluido y en pretendido beneficio de todos, no para lo contrario.

Mezcolanza: de INLA a GAM pasando por la frenología

Combino en uno cuatro asuntos demasiado prolijos para Twitter pero sobre los que no sé lo suficiente como para desarrollarlos en una entrada entera.

El paquete stpp de R tiene muy buena pinta para el análisis de conteos espacio-temporales. Se recomienda leer el artículo que lo describe. Para el tipo de problemas que plantea, se me habría ocurrido tirar de INLA. Desafortunadamente, a los autores del artículo no se les ocurrió compararlos. Cosas de la academia.

Sobre el problema de las martingalas: ¿cuántos sabíais la respuesta?

Pues no se sabe bien. Además, habrá quién pudiéndola haber averiguado, prefirió dejarse llevar por la intuición y errar. Pero volvamos a los hechos. Dado

la pregunta urgente es: ¿cuántos podrían haber conocido la respuesta? Suponiendo que el conocimiento de la respuesta es algo binarizable (¿lo es?), la distribución del número de respuestas correctas sería $latex pN + X$, donde $latex N$ es el número total de respuestas, $latex p$ es la proporción de quienes sabe la respuesta y $latex X \sim B(N - pN, 1/3)$, suponiendo siempre que $latex pN$ es entero.

El z-score es una medida inadecuada de la perplejidad

Tenemos un dato y un valor de referencia. Por ejemplo, el valor predicho por uno modelo y el observado. Queremos medir la distancia entre ambos. ¿En qué unidades?

Antes de eso, incluso, ¿para qué queremos medir esa distancia? Esta es la pregunta fácil: para ver cómo encaja en el modelo propuesto, para ver cómo lo sorprende, para cuantificar la perplejidad.

Los estadísticos están acostumbrados a medir la perplejidad en unas unidades que solo ellos entienden, si es que las entienden: desviaciones estándar. El z-score de un residuo es el número de desviaciones estándar que lo separan de su estimación. Si es una, exclaman ¡bah!; si es dos, ¡oh!; si es tres, ¡oooh!; si es cuatro, ¡ooooooh, válgame Dios!, etc.