abc

ABC (II)

Más sobre lo de ayer. O más bien, una justificación por analogía. Con monedas. Tiras una moneda 100 veces y obtienes 60 caras. Tienes una priori $latex B(a,b)$ (beta). Tomas una muestra de valores $latex p_i$ con esa distribución y para cada una de ellas repites el experimento, es decir, obtienes lo que en R se expresaría de la forma 1 rbinom(1, 100, p[i]) Si te quedas los valores $p_i$ tales que esa simulación es 60, enhorabuena, tienes una muestra de la distribución a posteriori.

ABC (I)

Que quiere decir approximate Bayesian computation. Es un truco para pobres y desafortunados que no pueden quitarle la A a BC y usar directamente cosas como Stan o similares. El que no quiera prioris, además, puede usar el ABC para estimar la forma de la verosimilitud alrededor de una estimación puntual. Por supuesto, el objetivo es obtener una estimación de la posteriori para poder medir la incertidumbre de parámetros, etc. La idea es que se dispone de unos datos, $latex X$ y un mecanismo de generación de datos $latex X^\prime = f(\theta)$, donde $latex \theta$ es un vector de parámetros.

ABC

ABC significa, entre otras cosas, approximate bayesian computation. Por lo que parece, consiste en calcular $latex P(\theta ,|, \text{datos})$ por el tradicional y directo método del rechazo. Es decir: Planteas un modelo generativo, con sus prioris y todo. Simulas casos, casos y casos. Te quedas con los que cumplen un criterio de aceptación. La distribución empírica de los parámetros en el subconjunto de los casos aceptados representa, en los libros está escrito, la distribución a posteriori.