Economía

Sobre acicate como traducción de "nudge" y otros asuntos más

El riesgo se mide a través de la varianza (sic), pero el FOL (fear of loss) se refiere únicamente a las pérdidas (o la “semivarianza”). Un activo inspira FOMO (fear of missing out) cuando existe la posibilidad de que tenga una subida abrupta e inesperada que se puedan perder quienes lo ignoran. Esto lo mide la asimetría de la distribución de rendimientos.

Sobre la menguante calidad de las estadísticas públicas y algunos otros asuntos más

El fertilizante para jardinería trae por detrás tres numeritos tras la etiqueta NKP, que indican la proporción de nitrógeno, potasio y fósforo en la mezcla. Es sabido que el crecimiento de las plantas está limitado por el más escaso: es decir, fijada una de las tres letras, incrementar las otras dos no aporta beneficio alguno. Sin embargo, no solo de fertilizante viven los cultivos y las tendencias globales muestran que producir más comida no exige cantidades crecientes de insumos agrícolas Se puede hacer más con lo mismo —o con menos— usando más de otro insumo del que tampoco andamos tan sobrados: materia gris.

Cómo recompensamos a los creadores de ideas y algunos asuntos más

Comienzo con tres artículos recientemente sobre un mismo tema: los problemas de los que adolecen las estadísticas públicas y las dificultades que ello supone para la gestión económica. Uno de ellos es este, en el que se da cuenta de la creciente desconfianza de los economistas de muchos países en los resultados de las encuestas que publican los órganos estadísticos. Apunta a dos causas: la infrafinanciación de la función estadística y a la desconfianza de la población, manifestada en el derrumbe de la tasa de respuesta en las encuestas. El segundo se refiere a problemas específicos en el cómputo de la tasa de inflación en Argentina provocados por la flagrante desactualización de los ítems de la canasta de referencia. El tercero abunda en las sutilezas del proceso de actualización de dicha canasta.

¿Está empeorando la calidad de las estadísticas públicas? (y algunos asuntos más)

En Faulty Speedometers se discute el creciente problema de calidad en determinadas estadísticas de la ONS (el INE británico). Acerca de la EPA de allá, dice:

La caída de la tasa de respuesta no ha sido uniforme en todas las categorías demográficas y la ONS se ha visto obligada a aplicar cada vez más hipótesis y datos imputados a la hora de estimar el número de empleados, la tasa de paro y la tasa de inactividad. El resultado han sido estadísticas oficiales del mercado de trabajo que parecen ser simplemente incorrectas.

La paradoja (de Simpson) detrás de ciertos argumentos en pro de una subida generalizada de salarios

Trae El Confidencial un artículo de Javier Jorrín —según Jesús Fernández-Villaverde, el mejor periodista económico ahora mismo en España—, titulado La mejora de la productividad permitirá a las empresas prolongar la subida de salarios. El artículo se resume en tres enunciados que, así, en frío, según se verá, son contradictorios:

  1. Ha aumentado la productividad (PIB por hora trabajadda) en España.
  2. Eso da margen para que suban los salarios.
  3. El incremento de la productividad se debe a que ganan peso los sectores económicos más productivos.

La problemática relación entre (1) y (2) se la dejo a los economistas. Se pueden elaborar experimentos mentales en los que (2) se sigue de (1) y otros en los que no. Evaluar su pertinencia no es materia de estas páginas.

"El problema de la academia" y cuatro asuntos más

I.

Aquí dice lo que con mi traducción suena así:

El problema de la academia no es el plagiarismo. En economía, un secreto que la academia guarda celosamente es que casi toda la investigación es inválida o inútil por varios motivos.

¿Qué hacer? No leer.

II.

¿Y en estadística? Aquí se cita la frase

Gran parte de la estadística del siglo XX es una pérdida de tiempo consistente en calcular respuestas precisas a preguntas irrelevantes.

Embeddings, LLMs y algunas de sus aplicaciones a mediados de 2024

I.

Están apareciendo herramientas basadas en LLMs para industrializar la investigación. Tengo recopiladas, por el momento, cuatro: Consensus, Zotero, Elicit, Tavily y FutureSearch. De vez en cuando pruebo Consensus para valorar cómo va mejorando. Y le queda: la última vez, al preguntarle sobre el procedimiento científico para reproducir la dipladenia por esquejes, me sugirió algo así como aplicarle rayos gamma (!).

II.

Unos cuantos enlaces sobre aplicaciones reales —en la economía real— de los LLMs (y los LMMs) en diversas áreas, como el vídeo (vía sora), la música (vía suno), la programación (vía devin) o el RAG y/o Finetuning.

Descuento hiperbólico: lo que es y lo que no es

I.

La teoría dice que el valor ahora (o presente) de un bien $A$ en el futuro, dentro de un tiempo $t$, es $A\exp(-tr)$, donde $r$ es la llamada tasa de descuento.

Entonces, si $A$ son 100 € y la $r$ de cierto individuo es tal que el valor presente de 100 € dentro de un año son 50 €, este individuo valorará de igual manera 50 € hoy o $100 \exp(-r) = 50$ € dentro de un año.

Alberto Olmos sobre los microfundamentos y cuatro asuntos más

I.

Juan Cambeiro escribe en Asterisk What Comes After COVID. El covid nos aburre y no nos interesa, pero el artículo es un ejercicio de “probabilidad aplicada” —en el que se estudia cuándo y qué causará la próxima pandemia, pero eso es casi lo de menos— del que muchos podrán sacar provecho.

II.

La mayor parte de los artículos en economía son inútiles; todos los involucrados lo saben. Fuera del primer cuartil, todo es esencialmente es una estafa que no sobreviviría una revisión crítica."

Errores en modelos. Zillow. Control de alquileres.

I. Errores en modelos

A menudo he usado

plot(cars$speed, cars$dist)
abline(lm(dist ~ speed, data = cars), col = "red")

con el que se crea la requetemanida gráfica

útil para ilustrar aspectos relacionados con el ajuste de modelos. Hoy, toca de nuevo.

Salvo que uno haga cosas muy extravagantes, los errores de un modelo están tanto por arriba como por debajo de la predicción. De hecho, en una amplia clase de modelos $\sum_i e_i =0$ en entrenamiento y, usualmente, la suma de los errores no debe de quedar muy lejos de cero tampoco en validación (y en el mundo real). Uno puede casi siempre decir: unas veces me quedaré corto; otras largo y la ley de los grandes números me da ciertas garantías de que lo dado compensará lo servido en el largo plazo.