Econometría

Lecturas disparatadas: la salud de los críos y el desempleo

Hay gente que en lugar de escribir cosas debería invertir su tiempo en leer otras. Pero como

  • no me hacen caso,
  • escribiendo cosillas escalan poquito a poco escalafones académicos y, encima,
  • lo pagamos los contribuyentes felizmente engatusados eso del oropel del I+D y nosequé otros intangibles onerosos y de dudosa utilidad pública,

podemos hoy disfrutar de otro ejercicio más de ese añejo ritual de la búsqueda del numerito inferior a 0.05 que tiene por título Newborn Health and the Business Cycle: Is it Good to be Born in Bad Times? y que adornará a perpetuidad el currículo de sus ambas autoras.

Menos econometría y más precioestatos

¿Será necesario un doctorado en econometría para poner una lavadora? Con eso ironiza el autor de El nuevo sistema de precios para la electricidad (I): Entre la tarifa gusiluz y la tarifa batamanta.

Os cuento el contexto.

Al parecer, a partir de cierta fecha no muy remota, el precio de la electricidad en España variará de acuerdo con el precio en el mercado de generación y, por lo tanto, según la hora. Las variaciones podrán ser importantes según el día, el tiempo, etc. De manera que los consumidores no sabrán —salvo que malgasten mucho tiempo consultando algún tipo de servicio de cotizaciones en tiempo real— cuánto les costará poner una lavadora. Y, por lo tanto, tampoco podrán ajustar su consumo al precio. Etc.

La desigualdad y cómo medirla

Últimamente he tenido bastantes visitas del extranjero. Las llevo a pasear por el centro de Madrid, ¡qué remedio! Y siempre surge el mismo comentario: habiendo crisis que nos cuentan los periódicos, ¿cómo es que están las terrazas a rebosar? Y mi respuesta es siempre la misma: lo que se ve no es la crisis; lo que se ve, en el fondo, es la desigualdad.

Otros han escrito, y mucho mejor de lo que lo haría yo, sobre lo pernicioso de la desigualdad en la economía e incluso, sobre la misma democracia. Yo me limitaré a exponer algunos problemas que produce su cuantificación.

Variables instrumentales con R

Los economistas usan unas cosas a las que llaman variables instrumentales con las que uno apenas se tropieza fuera de contextos econométricos. El problema se plantea en el contexto de la regresión

$$y_i = \beta x_i + \varepsilon_i,$$

cuando existe correlación entre X y $latex \varepsilon$. En tales casos, el estimador por mínimos cuadrados es

$$\hat{\beta} =\frac{x’y}{x’x}=\frac{x’(x\beta+\varepsilon)}{x’x}=\beta+\frac{x’\varepsilon}{x’x}$$

y debido a la correlación entre X y $latex \varepsilon$, está sesgado.

La solución que se plantea en ocasiones es el de usar variables instrumentales, es decir, variables correlacionadas con X pero no con $latex \varepsilon$. La siguiente simulación en R ilustra el problema:

Cuando falta la variable más importante (II)

No sé si esto que voy a contar me obliga a tragarme mis propias palabras. Porque siempre he pensado que era poco menso que imposible. Pero hace unos pocos días escribí sobre el asunto y hoy traigo otro similar a colación.

La variable más importante a la hora de construir un modelo es, precisamente, la que se quiere predecir. Casi todos los textos asumen que se conoce sin ningún género de dudas en, al menos, una determinada muestra que, además, corresponde más o menos a la población subyacente: si el paciente sobrevive o no; si la hipoteca entra en mora o no; si el cliente responde a la oferta o no, etc.

Guía de econometría básica con R

Aunque muchos de mis lectores ya estarán al corriente de la noticia, la reitero aquí: Gregorio Serrano ha comenzado una serie de artículos en su bitácora sobre econometría básica con R.

Puede seguirse por RSS (incluso usando mi agregador de noticias sobre R en RSS o HTML) y en su cuenta de Twitter.

Addenda: En 2021, desactivo los enlaces rotos/inactivos. El curso, de hecho, está aparentemente desaparecido. Si alguien tiene noticia sobre cómo acceder a él, le ruego que se ponga en contacto conmigo.