Encuestas

Escribid a ley de Stamp en un papelito y pegadla en el espejo

Esta página me conduce a esta otra en la que, aparte de revelar su la autoría, nos informa de que la cita

The government are very keen on amassing statistics. They collect them, add them, raise them to the nth power, take the cube root and prepare wonderful diagrams. But you must never forget that every one of these figures comes in the first instance from the chowky dar [village watchman in India], who just puts down what he damn pleases.

Pesadumbre e incertidumbre desencadenadas

Hoy escribo afectado por un derrame de pesadumbre. Pero esa es solo una opinión que igual no importa nadie.

Estas del 8 de noviembre han sido las elecciones en que menos y que más caso he hecho de las encuestas electorales. Cansado del cada vez más monótono ciclo de que

  • se publican encuestas electorales
  • llegan las elecciones y el resultado no se parece en nada a lo dibujado por ellas y
  • se reitera el mismo blablablá (en latín se dice excusatio non petita) que unos meses antes

he decidido esta vez dejar de prestar atención a algo que, se ha visto, no ha sido sino ruido. Les he hecho caso, sin embargo, al inclinarme a comprar con ánimo 100% especulativo unas accioncillas que hoy valen el 4% menos que ayer y el 2% menos que cuando las compré. ¡Contento me tienen los científicos de opinión pública y sus benditas batas blancas!

Encuestas electorales: una propuesta

No estoy muy al tanto de la regulación que afecta a la confección de encuestas electorales. Me consta la existencia de algunas normas, como la prohibición de publicarlas durante los últimos días de la campaña. No sé si fiarme de mi memoria a la hora de añadir alguna relativa a cuestiones técnicas, como la de que vayan acompañadas de una ficha metodológica.

Pero, y aunque sea alérgico a la regulación en general, me atrevo a apuntar una modificación que podría tener sus méritos. Está basada en algunas experiencias anteriores. Por ejemplo, la que sugiere este artículo del NYT. En él se cuenta cómo el periódico hizo llegar a cuatro grupos de expertos los datos brutos de una encuesta electoral en Florida. Los resultados obtenidos por esos grupos se resumen en la siguiente tabla:

Gestión de la mendacidad encuestoelectoral: los números

Continuando con la entrada anterior, ahora, números.

Primero, el planteamiento (cuatro partidos, etc.):

probs <- c(4, 3, 2, 1)
probs <- probs / sum(probs)
partidos <- letters[1:length(probs)]

Nos hará falta más adelante

library(plyr)
library(rstan)
library(ggplot2)
library(reshape2)

Sigo con el proceso de muestreo. Reitero: cada encuestador enseña al encuestado una tarjeta al azar donde aparece el nombre de dos partidos y le pregunta si ha votado (o piensa votar) a alguno de ellos.

n <- 3000
resultados <- data.frame(
  tarjeta = sample(1:nrow(tarjetas), n, replace = T),
  partido = sample(partidos, n, prob = probs, replace = T))
resultados <- data.frame(
  tarjetas[resultados$tarjeta,],
  partido = resultados$partido)
resultados$coincide <- resultados$partido == resultados$partido1 |
  resultados$partido == resultados$partido2

# proporciones reales en la muestra
props.muestra <- table(resultados$partido) / nrow(resultados)

# resultados agregados (por tarjeta)
resultados.agg <- ddply(
    resultados, .(partido1, partido2),
    summarize,
    total = length(partido1),
    coincidencias = sum(coincide))

Y

Gestión de la mendacidad encuestoelectoral

Lo de que la gente que miente al ser encuestada se ha esgrimido frecuentemente en los últimos días. Inspirado en esto, se me ha ocurrido (posiblemente reocurrido: es fácil que la idea sea conocida, sobre todo si resulta ser buena) el siguiente procedimiento para la realización de encuestas electorales.

  • El encuestador va provisto de una colección de cartulinas en las que aparecen parejas de nombres de partidos políticos.
  • El encuestador muestra al encuestado una cartulina al azar dentro de su colección.
  • El encuestador pregunta al encuestado si ha votado (o piensa votar) a alguno de ellos.
  • Se registran los partidos mostrados y la respuesta, positiva o negativa, del encuestado.

Con una versión del procedimiento que describo en la entrada que enlazo más arriba, se podrían redescubrir las opciones de la población subyacente, aun ignorando el de cada uno de los encuestados. No sé cuál sería (si no se me adelanta nadie, igual la hago yo) el procedimiento, pero seguro que no es tan complicado como para que Stan no pueda con ello.

Por una vez, accedo a hablar de algo de lo que no sé

Me piden que opine sobre lo de las encuestas electorales y su error. Vaya por delante mi confesión de que de eso sé poco. Soy matemático, no estadístico, y uno de los mayores huecos (¿simas?) de mi formación estadística tiene que ver con todo lo relativo al muestreo. Así que, con la valentía que aporta la ignorancia, procedo.

El primer gran problema con las encuestas electorales es que confunden países con urnas y gente con bolas de colores. Si en una urna hay N bolas (de colores distintos) y queremos estimar su número mediante una extracción de n bolas, existe un margen de error debido a que en lugar de ver todos los datos uno ve únicamente una muestra.

¿Alguien podría identificar tirios y troyanos?

Con los datos

pcts <- cbind(
  c(35.7, 19.6, 6.6, 16.6, 9.6),
  c(0.3, 0.2, 0.2, 0.3, 0.8),
  c(25.0, 14.9, 10.7, 32.7, 12.9),
  c(1.6, 8.0, 8.5, 6.5, 7.9),
  c(11.0, 18.7, 7.9, 12.7, 8.0),
  c(3.2, 21.5, 52.9, 16.7, 47.9)
)

totales <- c(1102, 975, 596, 638,	174)
tabla <- round(t(pcts * totales / 100))

y el concurso de

library(MASS)
biplot(corresp(tabla, nf = 2))

genero

partidos_cadenas

que a lo mejor no resulta demasiado interesante si no añado que las columnas se refieren a partidos políticos y las filas a cadenas en las que, según el CIS, sus votantes prefieren para seguir la actualidad política. Eso sabido, ¿cuál es cuál?

Encuestas electorales: medios y sesgos (II)

Aquí quedó pendiente hablar de datos y métodos. Los primeros proceden de El Mundo. Solicité a Marta Ley, una coautora, los datos pero, antes de que contestase que sí (¡gracias!), me di cuenta de que podía obtenerlos solito: basta con capturar la llamada que el javascript local hace al servidor.

¿Métodos? Mejorables: se suaviza la intención de voto (con loess) y se estima la diferencia con un modelo de efectos mixtos, i.e.,

modelo<- lmer(delta ~ 1 + (1 | medio),
    data = misdatos)

¿Caveats? Veo dos: el primero, que loess suaviza teniendo en cuenta también observaciones futuras. Los autores de las encuestas no ven la verdad: solo los resultados de las encuestas previas. Debería haber usado como referencia la mejor predicción basada en observaciones pasadas. El segundo, que los porcentajes de los distintos partidos suman un total. Los sesgos no son independientes y yo los modelo como tales.

Encuestas electorales: medios y sesgos (I)

Existen las encuestas electorales. Las publican medios. Algunos, se dice, tienen sesgos. Lo he estudiado y a continuación muestro resultados.

Para el PP:

sesgo_encuestas_pp

Para el PSOE:

sesgo_encuestas_psoe

Para Podemos y cía:

sesgo_encuestas_podemos

Para Ciudadanos:

sesgo_encuestas_ciudadanos

Para IU:

sesgo_encuestas_iu

En otra entrada, datos y métodos. Hoy solo adelanto que el eje horizontal mide puntos porcentuales y que las encuestas se remontan a enero de 2015.

Análisis estadístico de respuestas ocultas en encuestas

A veces se hacen encuestas sobre temas sobre los que los encuestados son reticentes a revelar la verdad (p.e., ¿es Vd. un zombi?). Un procedimiento conocido para recabar tal tipo de información es el siguiente:

  • Se le invita al encuestado a tirar al aire una moneda con las caras etiquetadas con y no; la moneda no es una moneda porque tiene una probabidad conocida (y distinta del 50%) de caer en .
  • El encuestado responde sí si la respuesta a la pregunta y el resultado de la tirada de la moneda coinciden y no en caso contrario.

A partir de la proporción de respuestas positivas y conocida la probabilidad del de la moneda, $latex q$, es posible estimar la proporción $latex \theta$ de respuestas positivas a la pregunta de subyacente de interés en la muestra. Efectivamente, los síes tienen una distribución binomial $latex B(p) = B(q\theta + (1-q)(1-\theta))$ y, una vez estimado (por máxima verosimilitud) $latex \hat{p}$, puede despejarse $latex \hat{p}$ de $latex \hat{p} = q\hat{\theta} + (1-q)(1-\hat{\theta})$ para obtener

¿A cuántos zombis conoces?

El artículo cuya lectura propongo hoy comienza así:

La zombificación es un gran problema de salud y de seguridad pública muy difícil de estudiar usando los métodos tradicionales basados en encuestas. Se cree que la tasa de penetración del teléfono entre la población zombi es pequeña. Además, los zombis son reacios a identificarse como tales al ser encuestados. Las entrevistas personales suponen un riesgo elevado para quienes las realizan. Las esperanzas originalmente depositadas en las encuestas a través del ordenador se desvanecieron ante el riesgo de que los virus propagasen la infección zombi.

La funesta manía de querer acertar

Vayan dos cosas por delante:

  • Que la de pretender acertar es una perniciosa manía. Más loable es la de tratar de evitar un fallo catastrófico.
  • Que recomiendo muy mucho seguir las cosas que hace Kiko Llaneras.

Dicho lo cual…

Kiko Llaneras ha estado elaborando predicciones del resultado de las elecciones en Cataluña durante la precampaña. Pueden verse aquí. El documento enlazado incluye una discusión de la metodología.

A diferencia de los más de los comentaristas, Kiko ofrece, más que pretendidas certezas, distribuciones. Tal y como hacen los que más saben. Es algo aplaudible.