GoF para modelos bayesianos

Existe una muy perezosa escuela de pensamiento que sostiene que dado que las probabilidades son subjetivas, cualquier modelo y, en particular, los bayesianos, como expresión de la subjetividad de sus autores, no necesita ser contrastado con la realidad. Porque, de hecho, la realidad no existe y es una construcción que cada cual hace a su manera, deberían añadir. Existe, por supuesto, una escuela realista tan mayoritaria que ni siquiera es consciente de que lo es. Basta leer la primera página de Statistical Modeling: The Two Cultures para hacerse una idea muy clara de a lo que me refiero. ...

28 de enero de 2020 · Carlos J. Gil Bellosta

La probabilidad, ¿algo subjetivo?

Esta entrada es una contestación a Pregunta: ¿qué opinaríais si os dijese que la probabilidad es algo subjetivo construido en base a nuestro conocimiento y que realmente solo existe a nivel subatómico? Os lo creáis o no, es una discusión que suelo tener con mis alumn@s y que he recordado leyendo a Spiegelhalter — BayesAna (Anabel Forte) 🏳️‍🌈🧚🏼‍♂️ (@AnaBayes) January 4, 2020 I. Habrá quien sostenga que la geometría (plana, euclídea, por antonomasia) es subjetiva, que es una construcción de la mente, de cada mente. Igual queda todavía alguno de los que, por el contrario, creían que los triángulos equiláteros residen en una especie de edén donde tienen una existencia ideal y que nuestra mente, de alguna manera, se limita a reflejarlos. ...

7 de enero de 2020 · Carlos J. Gil Bellosta

Los factores de Bayes son las hamburguesas veganas

Si eres vegano, vale, come tu lechuga y tu berenjena. Pero, ¿qué necesidad tienes de hamburguesas veganas? ¿Y a qué viene ufanarte de que saben casi igual? [Nota: el párrafo anterior está escrito en condicional y aplica a ciertos veganos, entrellos alguno que conozco.] Siempre he visto todo lo que rodea a los factores de bayes un tufillo a hamburguesa vegana. Es decir, un intento por reproducir lo más fidedignamente posible aquello que —¿por razones metodológicas?— rechazamos. ...

25 de noviembre de 2019 · Carlos J. Gil Bellosta

bamlss promete regresión bayesiana flexible

Un paquete relativamente nuevo de R (las primeras versiones son de 2017) que llevo un tiempo siguiendo de reojo es bamlss. bamlss es un paquete que permite especificar y ajustar varios tipos de modelos usando en principio métodos bayesianos, aunque tampoco necesariamente. No puedo decir mucho más de él de momento. Habrá que ver cómo se comporta más allá de los ejemplos discutidos en la documentación. Muchos paquetes tienden a hacer trivial lo que antes era sencillo e imposible lo que antes difícil. Espero que no sea el caso y que acabe facilitando la divulgación de herramientas estadísticas avanzadas más allá del consabido $y \sim x_1 + x_2 + \dots$ envuelto sea en lm o en XGBoost.

19 de noviembre de 2019 · Carlos J. Gil Bellosta

A más gripe, ¿menos mortalidad? En determinados submundos frecuentistas, sí

Estos días he tenido que adaptar y ejecutar con datos españoles una serie de modelos para medir la virulencia de diversos subtipos de gripe. Y todo bien, salvo que para uno de ellos y determinados grupos de edad… a mayor prevalencia, menor mortalidad. ¡Estupendo! Todo sucede porque un coeficiente que debería haber sido necesariamente positivo fue estimado como negativo (además, significativamente). Y el coeficiente tenía el signo cambiado (¡error de tipo S!) debido a una serie de problemas sobradamente conocidos: ...

13 de noviembre de 2019 · Carlos J. Gil Bellosta

tfprobability debería llamarse tfeoprobability

Porque, aunque la intención sea buena, el DSL (que ni siquiera llega a serlo) es muy, muy feo. Que en este contexto, además, quiere decir antinatural. La demostración, aquí, aquí o aquí.

12 de noviembre de 2019 · Carlos J. Gil Bellosta

Pyro

Leyendo sobre si dizque PyTorch le siega la hierba debajo de los pies a TensorFlow, averigué la existencia de Pyro. Pyro se autopresenta como Deep Universal Probabilistic Programming, pero aplicando métodos porfirianos (ya sabéis: género próximo y diferencia específica), es, o pretende ser, Stan en Python y a escala. Aquí van mis dos primeras impresiones, basadas en una inspección superficial de los tutoriales. En primer lugar, aunque Pyro permite usar (distintas versiones de) MCMC, parece que su especialidad es la inferencia variacional estocástica. Que parece funcionar de la siguiente manera. En el MCMC tradicional uno obtiene una muestra de la distribución (a posteriori, para los amigos) de los parámetros de interés. Eso es todo: vectores de puntos. En la inferencia variacional estocástica, uno preespecifica la forma paramétrica de la posteriori y el algoritmo calcula sus parámetros a partir de los valores simulados. Por ejemplo, uno va y dice: me da que la distribución del término independiente de mi regresión lineal va a ser normal. Entonces, Pyro responde: si es normal, la mejor media y desviación estándar que encuentro son tal y cual. ...

14 de octubre de 2019 · Carlos J. Gil Bellosta

Rootclaim

Rootclaim es un portal donde la gente plantea preguntas como plantea hipótesis como se recogen evidencias y usando este método (leedlo, es sumamente aprovechable: usa la palabra bayesian 23 veces), llega a conclusiones tales como

27 de septiembre de 2019 · Carlos J. Gil Bellosta

Bayes no había previsto esto

Muestreo. Se trata de seleccionar unas unidades experimentales (proceso caro) y tratar de estimar una proporción (p.e.) en la población total. Existen técnicas para estimar el valor N mínimo para garantizar cierto margen de error. Pero dichas técnicas requieren conocer (algo d-) el resultado del experimento para estimar N (p.e. una estimación de la proporción que cabe esperar). Circulus in demonstrando. Bayes. Ve examinando unidades y actualiza tus intervalos de credibilidad hasta que tengan la anchura solicitada. ...

18 de junio de 2019 · Carlos J. Gil Bellosta

Un recíproco para el teorema de Bernstein–von Mises

Aquí se describe una suerte de recíproco para el teorema de Bernstein–von Mises. Aquí se resume de esta manera: El famoso teorema del acuerdo de Aumann demuestra que dos agentes racionales con las mismas prioris sobre un fenómeno pero que observan datos distintos llegarán a un consenso sobre las posterioris después de una charla civilizada mientras se toman té. En resumen: B-vM: frente a la misma evidencia, observadores con prioris distintas tienen posteriores similares. Aumann: frente a evidencias disímiles, observadores con las mismas prioris pueden acordar posterioris similares.

10 de mayo de 2019 · Carlos J. Gil Bellosta