Estadística

Un generador de datos sintéticos para proteger la privacidad de los microdatados

DataSynthesizer (véase también el correspondiente artículo) es un programa en Python que:

  1. Toma una tabla de datos (microdatos, de hecho) que contiene información confidencial.
  2. Genera otra aleatoria pero que conserva (¿los conservará?) la estructura básica de la información subyacente (conteos, correlaciones, etc.).

Está pensado para poder realizar el análisis estadístico de (determinados) datos sin verlos propiamente.

Particularmente interesante es el algoritmo para preservar la correlación entre columnas.

[Nota: he aprovechado la entrada para acuñar el neologismo microdatado para referirme a quien figura en un fichero de microdatos.]

¿Existirá algún caso de uso de la estadística que no sea materia prima para la toma de decisiones informadas?

Estoy escribiendo unas notas muy punk sobre estadística. Desde cero. Hasta la luna. Pero que no se parecen en absoluto a nada de lo que he visto habitualmente escrito sobre la materia. Uno de sus capítulos, el primero, habla en general de la estadística. Abre con

Statistics is a technology concerned with stochastic data generating systems (SDGS) for the purpose of making informed decisions.

y el resto del capítulo desarrolla cada elemento de la frase (sí, qué es una tecnología, etc.). Sin embargo, lo más punk de la frase es el asunto de las decisiones. Porque, en el fondo, ejerciendo de estadístico, apenas se me ha encargado tener que tomarlas. Eran cosa de otros, de los que manejaban el presupuesto.

El calendario chino como determinante en el sexo de los hijos

No a la hora en la que escribo esto pero, probablemente y por lo que me han dicho, sí a la hora en la que se publique esto, aparecerá en la revista Buena Vida de El País un artículo en el que se me menciona como experto y que se refiere a lo que encabeza esta entrada.

Por si las necesarias ediciones y por su valor intrínseco, reproduzco aquí (casi) íntegro el correo que he enviado a la autora:

gam vs rrff (y, en general, modelos generativos vs cajas negras)

Para modelizar una serie temporal, y simplificándolo mucho, ¿gam o rrff? Como todo, depende. El otro día oí de un caso en el que los segundos vencían a los primeros claramente. Natural.

Hay contextos con una estructura matemática clara y potente. En particular, muchos en los que trabajo actualmente. ¿Para qué usar una herramienta genérica cuando cuento con una específica? Esos datos, mis datos, exigen estructura matemática.

Luego hay otros casos en los que uno se lanza al río. Luego uno siempre quiere invertir el proceso y ver qué carajos está ocurriendo con los datos (véase esto).

Redundancias (o por qué empeñarnos en tener tantos datos cuando con una fracción sobra)

[Esta entrada no contiene ni respuestas ni, tan siquiera, buenas preguntas. Solo vuelco en ella ideas más o menos inconexas que me rondan la cabeza. Tal vez alguien sepa reformularlas mejor, plantear la pregunta concreta que exige el asunto y, con suerte, responderla con claridad y distinción.]

Mi proyecto trata de la estimación de los parámetros que rigen una determinada curva (altamente no lineal) de la que se tienen N observaciones en el tiempo. Igual que tengo N podría tener 2N o N/2.

Un problema: cómo muestrear histogramas con medias. La vía de los trapecios

Me refiero muy impropiamente con histogramas con medias a algo parecido a

que son resúmenes de datos en los que aparecen no solo intervalos sino también las medias correspondientes a los sujetos dentro de esos intervalos.

Si uno quiere hacer cosas con esos datos tiene una vía que consiste en muestrear el histograma. Pero la media en cada intervalo será su punto central, no necesariamente su valor medio conocido.

Por simplificar, supongamos que tenemos datos en el intervalo [0, 1] cuya media es $latex \mu$. ¿Cómo obtener un muestreo razonable de valores en dicho intervalo?

Estimar la demanda es como ponerle el cascabel al gato

Alborozábanse los ratones al oír de sus líderes la solución definitiva al problema de aquel gato que los diezmaba inmisericordemente: ¡colóquesele un cascabel!

El problema gordiano del pricing, el cascabel que hay que ponerle a ese gato, es el de la estimación de la curva de demanda. Ahi radica el quid.

Unos lo resuelven con simulaciones que quedan estupendas sobre el papel. ¡Qué fácil es ponerle un cascabel a un gato de madera!

¿Qué más se supo de la correlación del s. XXI?

No os acordáis porque pasó en 2011. Yo tampoco me acordaba hasta que me volvió a la cabeza no sé bien por qué motivo. Pero durante un par de semanas hubo revuelo porque unos tipos habían descubierto una medida de correlación mucho mejor que la correlación, etc. Creo que hasta salió publicado en prensa. Yo escribí al respecto, claro está.

Ocho años después, nada. Y lo mismo, supongo, con tantas, tantas y tantas cosas.

A mayor efecto (sobre todo, si es novedoso), mayor escepticismo

El NYT resume un artículo recentísimo sobre esas cosas que preocupan tanto en EE.UU. y que viene a decir, en términos sucintísimos, lo siguiente:

  • A los niños negros les va mucho (mucho, mucho: el efecto tiene una magnitud enorme) peor en la vida que a sus equivalentes blancos independientemente de la clase social, riqueza del hogar y otros factores predictores del éxito.
  • En cambio, el efecto de la raza es inapreciable para las niñas.

Hoy todo el mundo habla del asunto. Y lo da por bueno. Pero yo advierto un elemento de sospecha: que un efecto tan, tan grande no haya sido advertido antes. De hecho, los comentarios que he leído sobre el estudio tienden a conjungar verbos como contradecir, utilizan expresiones como echar por tierra, etc.

Modelos de factores ocultos y la caverna de Platón

La filosofía griega, aunque tosca, es rica en imágenes poderosas. El monotemático, además, solo ve su monotema.

Así que observando

no pude dejar de pensar que sugiere perfectamente los modelos (de factores) ocultos: kriggin, Kalman, los HMM, etc.

En definitiva, los humanos vemos las sombras (ruidosas) de unos objetos ideales que permanecen escondidos. Aunque a diferencia del iluminado platónico que logra girar la cabeza, nosotros, simplemente, exprimimos las sombras para conocer más y mejor los objetos que las proyectan.