Estadística

Gelmaneando

Hoy, gelmaneo así:

bar <- function(n, reps = 1e4){
  foo <- function(n){
    x <- rnorm(n)
    tmp <- t.test(x)
    c(tmp$p.value, abs(mean(x)))
  }

  res <- replicate(reps, foo(n))
  tmp <- t(res)
  tmp <- tmp[tmp[,1] < 0.05,]
  tmp[,2]
}

res <- lapply(c(3, 10, 20, 50, 100), bar)
sapply(res, mean)
#[1] 0.8662636 0.6583157 0.4934551 0.3240322 0.2337086

Resumo:

  • Fabrico un montón de errores de tipo I. Recuérdese: error de tipo I implica artículo publicado.
  • Hago variar el número de sujetos (3, 10, etc.), n.
  • Mido el tamaño (promedio) del efecto, E; el estudio de su distribución, ejercicio para el lector.

Y efectivamente, E es función decreciente de n.

Estereotipos y estadística (II)

Hace tiempo escribí:

El porcentaje de mosquitos que pueden transmitir enfermedades es pequeño, muy pequeño. Sin embargo, decimos mosquitos transmiten enfermedades sin empacho.

Un porcentaje mucho mayor de los libros tienen tapas blandas. Sin embargo, no decimos que los libros tienen tapas blandas.

(Las frases anteriores no son estrictamente mías: en el enlace hay otros enlaces a sus fuentes y autores).

Hoy leo en el periódico un artículo que lleva por título ¿Por qué los hombres matan a las mujeres?

Dudas ¿razonables? que me asaltan

Casi siempre que leo artículos como La pobreza severa baja en España pero la desigualdad no se corrige en que se habla de pobreza, renta, deciles y demás, me asaltan siempre las mismas dudas que no sé si razonables o no. Sobre todo cuando enfatizan la situación de los deciles más extremos.

Porque nací en un barrio popular, vivo en otro y tengo más conocidos en Entrevías que en Puerta de Hierro. Y sé de quienes viven de dar palos en camiones, de quienes trapichean con todo tipo de sustancias, de quienes compran aquí y venden allá al tacataca, de los que tienen beca pa’tó y, además, un patinete eléctrico para cada churrumbel, etc. Imagino que en algún sitio morarán los y las meretrices que pueblan la noche madrileña y, en definitiva, los beneficiarios de un buen pedazo de ese 20% de la economía que se estima sumergida.

Hoy, como excepción, gritaré y justificaré: ¡Malditos logaritmos!

Dados unos números positivos hay que justificar por que no tomar logaritmos y no al revés. La carga de la prueba recae sobre quien no lo hace.

No obstante:

Tenía unos datos (para cada $latex t$) que siguen (me lo juran) un modelo teórico

$$ \log y \sim k \exp(-at)$$

Existen dos opciones para encontrar los parámetros deseados $latex k$ y $latex a$. El primero, tomando logaritmos y aplicando lm. El segundo, ajustando un modelo no lineal con, p.e., nls.

Este también buscaba la precisión donde tal vez menos importaba

Esta no va de prensa sino de una reunión de vecinos. Al terminar, hablo con uno de ellos y me cuenta que siempre se había dedicado a la construcción y que en alguna ocasión tocó la estadística. En particular, en el estudio, relevantísimo, que describo a continuación.

En los años 70, como parte de la preparación de las ofertas para construir una incineradora de basura en Madrid, una que se ve que aún existe, le encomendaron la muy estadística tarea de estimar el poder calorífico de la basura de la capital.

Aquellos que ignoran la estadística etcétera

Ayer asistí a una charla sobre errors. Brevemente (porque está estupendamente explicado, motivado y documentado por su autor, al que aprovecho la ocasión para saludar), hace esto:

library(errors)
valores <- unlist(list(a = 1, b = 2, c = 3))
vars    <- c(1, 1, 1)    # varianzas de esos datos/medidas
sds     <- sqrt(vars)

# errores
x <- valores
errors(x) <- sds
format(x[1] * sin(x[2])^3, notation = "plus-minus", digits = 3)
#[1] "0.75 +/- 1.28"

Y nuestro viejo, clásico, manido, infrautilizado, semidesconocido mas no por ello menos querido método delta, ¿para qué existe en lugar de (como elucubraba el filósofo), simplemente, no existir? ¿Para qué otra cosa sino para aprenderlo me levanté yo aquella fría mañana del 94 sino para contemplarlo proyectado de diapositivas manuscritas de acetato? ¿Fue en vano?

Así se inventó el nudo gordiano del "hombre medio"

Lo cuenta muy bien Todd Rose en How the Idea of a ‘Normal’ Person Got Invented.

Hay tres grandes eras en la estadística moderna:

  • La queteliana, resumida en la imagen del hombre medio: existe un prototipo sobre el que, tal vez, se consideran variaciones. Es decimonónica, pero colea.
  • La kamediana, que es una versión pizza partida en ocho de la anterior. Es de mitad del siglo pasado y perdura en paleomentes.
  • La contemporánea, que contempla cada sujeto en su individualidad (aunque inserta en su circunstancia). Es propia del big data bien hecho.

Que se desenvuelva exige deshacer (¿cortar a tajos?) un par de nudos gordianos.

Llegó (¿llegó?) el tiempo de la ingeniería estadística

Mucho se habla de ciencia de datos pero poco de una disciplina emergente de la que me ocupé hace tiempo en una entrada que entre las más de 1300 que llevo no ubico: la ingeniería estadística.

Porque muchos de nosotros no hacemos ciencia (¡Dios nos guarde!); más bien, resolvemos problemas reales en contextos reales. Y, entre otras cosas, defenimos o redefinimos el problema (¡al carajo con el RMSE!).

Pero, ¿qué es la ingeniería estadística? Pues podéis averiguarlo aquí mucho mejor contado que por mí.

Tres grandes problemas que ocupan pero, según el CIS, no preocupan

Plañe el periodista porque dizque hay tres graves problemas que, a pesar de lo que ocupan (en los medios), a la hora del CIS, no preocupan.

Aggiorno una vieja entrada para ver, por ejemplo, cómo ha variado en los últimos años la preocupación de los encuestados por el CIS acerca de uno de los tres graves problemas:

De hecho, el porcentaje que se muestra indica la proporción de los encuestados que mencionaron el asunto como uno de los tres principales problemas de España. La pregunta, de respuesta abierta, aparece así formulada en los cuestionarios: