Estadística

Parametrización de modelos de supervivencia (paramétricos)

He participado directa o indirectamente en algunas decenas de los llamados proyectos de churn. Estoy al tanto de aún más de los que he hablado con otros colegas.

Digresión (para desavisados): se aplica (impropiamente) el término churn a aquellos clientes (en general) que abandonan una compañía o dan de baja un servicio. En realidad churn se refiere al flujo a corto plazo de clientes de poco valor que adquiere una compañía y que pierde enseguida. No sé por qué no se ha popularizado abandono. Uno de los primeros proyectos que abordan los departamentos de inteligencia de clientes de las compañías que se lo pueden permitir es tratar de identificar aquellos clientes con alta probabilidad de abandonarla.

Grandes datos, máquinas pequeñas (y regresiones logísticas con variables categóricas)

Preguntaba el otro día Emilio Torres esto en R-help-es. Resumo la pregunta. Se trata de una simulación de unos datos y su ajuste mediante una regresión logística para ver si los coeficientes obtenidos son o no los esperados (teóricamente y por construcción).

El código de Emilio (cuyos resultados no podemos reproducir porque no nos ha contado qué similla usa) es

logisticsimulation <- function(n){
  dat <- data.frame(x1=sample(0:1, n,replace=TRUE),
                    x2=sample(0:1, n,replace=TRUE))
  odds <- exp(-1 - 4 * dat$x1 + 7*dat$x2 - 1 *dat$x1* dat$x2 )
  pr <- odds/(1+odds)
  res <- replicate(100, {
    dat$y <- rbinom(n,1,pr)
    coef(glm(y ~ x1*x2, data = dat, family = binomial()))
  })
  t(res)
}

res <- logisticsimulation(100)
apply(res,2,median)
## (Intercept)          x1          x2       x1:x2
## -1.0986123 -18.4674562  20.4823593  -0.0512933

Efectivamente, los coeficientes están lejos de los esperados, i.e., -1, -4, 7 y 1.

Cuando dicen que la variable x es exógena, quieren decir...

Cuando los economistas dicen que la variable $latex x$ es exógena (con respecto a una variable de interés $latex y$) en realidad quieren decir que la función de verosimilitud $latex f(x,y)$ puede descomponerse de la forma $latex f(x,y) = f(y|x) g(x)$ y eso permite modelizar $latex y$ en función de $latex x$.

Cuando la descomposición no es posible (porque $latex x$ y $latex y$ se influyen mutuamente) dicen que $latex x$ es endógena. Obviamente, a la hora de (pretender) modelizar $latex y$ pueden considerarse variables endógenas y exógenas (y la correspondiente descomposición de la verosimilitud es un ejercicio para el lector).

Rarezas: estadística algebraica

Matemáticas y estadística son peras y manzanas. La una es la ciencia del ser; la otra, del parecer. Se encuentran en la teoría de la probabilidad, pero se miran de reojo y con recelo. Por eso este curso de estadística algebraica es toda una rareza.

Contiene resultados, como la proposición 1.1.2 que… bueno, sí, bien, vale:

Proposición 1.1.2. Las variables aleatorias [discretas] X e Y son independientes sí y solo sí la matriz $latex p = (p{ij})$ tiene rango 1._

La curtosis de una variable aleatoria constante

Una mañana de hace veinte $latex \pm \epsilon$ años sufrí mi primera hora de clase de estadística reglada. No la olvidaré: fue un monográfico sobre momentos muestrales de todo orden; los sumatorios se salían por ambos márgenes de las transparencias de acetato. Horrible.

Sin embargo, aquel día perdí la ocasión de levantar la mano y preguntar por la curtosis de una variable aleatoria constante. Porque necesito un valor razonable por defecto y no se me ocurre ninguno. ¿Cero acaso? ¿Alguna sugerencia?

El problema de la estimación inversa

Supongamos que tenemos unos niños de los que sabemos las edades $latex x_i$ y las alturas $latex y_i$. Supongamos además que podemos estimar las segundas en función de las primeras con un modelo lineal clásico

$$ y_i \sim N(a_0 + a_1 x_1, \sigma).$$

Este modelo nos permite, dada una edad, estimar la altura y los correspondientes intervalos de confianza. Pero, dada una altura, ¿qué nos dice de la edad? Este es el problema conocido como de la estimación inversa.

Modelos mixtos por doquier

Los códigos postales, por ejemplo, son un problema a la hora de crear modelos predictivos: son variables categóricas con demasiados niveles. Así, por ejemplo, los bosques aleatorios de R solo admiten variables categóricas con no más de 32 niveles.

Hay trucos de todo tipo para mitigar el problema. Hace un año, Jorge Ayuso me puso sobre la pista de uno de los que tiene más recorrido. Consiste en [su versión más simplificada en]:

¿Hubo alguna vez un millón de palentinas?

En el año 2013 hubo 54 muertes de mujeres por violencia de género. Eso da una tasa nacional de poco más de dos por millón (de mujeres). El Mundo nos lo ha querido mostrar su distribución provincial así:

victimas_mortales_provincia

Diríase que la tasa palentina es enorme, cinco veces la nacional. Pero en Palencia viven del orden de cien mil mujeres y hubo un único caso en 2013 (además, ni la mujer ni el agresor, se ve, eran de la provincia sino de un pueblo limítrofe de Cantabria; solo que el cadáver apareció en al sur de la linde).

Sí, señor ministro... y encuestas

Cayó en mis manos

ss_netconfusion

que son los resultados de una encuesta en la que la misma pregunta (en puridad, una pregunta sobre una cuestión global y otra sobre un asunto particular de la anterior) reciben respuestas manifiestamente contrarias y contradictorias por parte de una muestra del ostentador de la soberanía.

Lo cual me recordó que hacía tiempo había dado con https://www.youtube.com/watch?v=G0ZZJXw4MTA extraído de Yes, Minister y que en inglés no subtitulado ilustra muy amenamente los efectos que sobre el público tiene la manera en que se plantean las cuestiones.

Como no tengo tiempo, voy a publicar una chorrada (y una coda)

Como no tengo tiempo, voy a publicar una chorrada. Voy a coger unos datos que encuentre por ahí, voy a tomar alguna variable, voy a pintarla (en un mapa, si puede ser) y luego voy a construir una narrativa. Espero que no os deis cuenta y me lo creáis todo.

Comienzo.

Los datos del World Values Survey (aquí podéis obtenerlos) son importantes y guays. De todas las variables que contiene, voy a extraer una, la variable importante (VMI).