Estadística

El equivalente cierto (y apuntes para su aplicación en el monotema ¡tan cansino! de este tiempo)

A veces toca comparar dos variables aleatorias: ¿cuál de dos juegos preferirías? Hay muchas maneras de resolver ese problema, de una larga historia, con mejor o peor fortuna. En el fondo, hay que crear un orden en el conjunto de las variables aleatorias y, en el fondo —y perdónenme mis excolegas matemáticos—, proyectarlas de alguna manera sobre los números reales.

Si este número real se elige de alguna manera razonable (p.e., fijando las variables aleatorias constantes), bien puede recibir el nombre de equivalente cierto. Que es el nombre que recibe en algunas disciplinas, pero que me parece particularmente afortunado.

TF-IDF

Imaginemos que queremos categorizar textos (i.e., poder decir algo así como: el texto 1434 trata de biología). Una manera de afrontar el problema, no la única, es contar palabras (o más en general, términos: piénsese en bigramas, trigramas, etc.).

Qué es

Por fijar ideas, pensemos en textos sobre economía (sí, porque voy a referirme a parte del análisis de los textos del blog nadaesgratis.es al que ya me referí aquí).

En total, en casi 33 MB de texto hay muchos términos (estrictamente, unigramas): en total, 81618 lemas (de acuerdo con la definición de Spacy de lema). Tiene sentido filtrar los términos para seleccionar solo aquellos más relevantes para clasificar los textos. Así, por ejemplo:

El hueco térmico: una caracterización vía kmeans

El hueco térmico es una variable aleatoria que representa la necesidad de utilizar energía térmica tradicional y no renovable para abastecer el mercado eléctrico. Tiene dos fuentes principales de variabilidad:

  • La variabilidad de la demanda.
  • La variabilidad de las fuentes de energía renovable.

[Una pequeña digresión: cuando $Y = X_1 + X_2$, la varianza de $Y$ depende de las de $X_i$ y de su correlación. Si son independientes, es la suma de las dos; si están negativamente correladas, la de $Y$ es inferior a la suma; etc. Este humilde opinador sostiene que a medio plazo no hay otro remedio para el sistema eléctrico que forzar una correlación negativa entre $X_1$ y $X_2$, lo cual, en plata, significa cortes más o menos selectivos de suministro.]

Sumas de variables de Bernuilli heterogénas

I.

El otro día planteé en Twitter la siguiente encuesta:

Como bien puede apreciarse, 16 personas tuvieron a bien contestar y nada menos que siete, casi la mitad, dieron con la respuesta acertada. Me gustaría saber qué cuentas de Twitter pueden presumir de una audiencia tan cualificada.

¿Por qué es esa respuesta correcta? Sean $p_i$ las probabilidades de éxito de $n$ bernoullis y $p$ el valor medio de las $p_i$. Entonces, la varianza de $Y$ es $np(1-p) = np - np^2$ y la de $X$ es

"Frente a la aspiración de una representación precisa, debemos considerar las limitaciones conceptuales, matemáticas y computacionales"

La cita que da título a la entrada procede —con mi ¿mala? traducción— del artículo Philosophy and the practice of Bayesian statistics que, en realidad, trata de otra cosa. Pero que resume muy bien algo que mucha gente tiende a ignorar: mucho del corpus de lo que actualmente llamamos positivamente estadística está condicionado por las circunstancias conceptuales, matemáticas y, muy especialmente, computacionales del momento en el que fueron concebidos.

Un ejemplo: hace cien años, aún se discutía cómo calcular la $\sigma$ de una muestra. Los calculadores preferían estimar

Matrices de confusión, sensibilidad, especificidad, curva ROC, AUC y todas esas cosas

Esta entrada es una breve introducción a los conceptos indicados en el título. Está motivada por una pregunta que se formuló en Twitter acerca de la existencia o no de lo que voy a escribir en español y a que ninguna de las respuestas aportadas me satisfizo.

Todos esos conceptos hacen referencia al estudio de la bondad de un modelo de clasificación (es decir, un modelo que trata de predecir una etiqueta (o una variable categórica, si se quiere) a partir de ciertos datos). Comenzaré por una descripción exenta de esos conceptos y terminaré con una discusión desde la perspectiva de su aplicación práctica que, espero, sirva para ponerlos en su lugar.

Vale, el modelo es y = f(x) + error y f es importante, pero lo que le da significado es y

Esta es una entrada sobre la semántica de los modelos que resume mi planteamiento en una discusión que tuve hace un tiempo en Twitter. La he buscado sin éxito, así que la resumo. Alguien —no recuerdo bien— quería explicar cómo hace AEMET las predicciones meteorológicas probabilísticas. Pero con un error de planteamiento. Venía a decir que una predicción meteorológica probabilística (p.e., la probabilidad de que mañana llueva en Madrid) no significa algo así como que de tantos días parecidos a los de hoy, al día siguiente llovió en tal proporción sino otra cosa distinta.

Si yo fuera rey, ¿cómo serían las encuestas electorales?

El otro día —más bien, aquel día en el que tomé las notas que uso en esta entrada— hubo elecciones regionales en Castilla y León. Durante las semanas anteriores se publicaron los resultados de una serie de encuestas electorales al uso, similares a estos:

Es decir, información típicamente cuantitativa.

Cerraron los colegios electorales, se contaron los votos y al día siguiente la prensa comenzó a discutir una serie de temas cualitativos muy concretos: si cierto partido había incrementado/reducido su número de votos, si tal otro había desaparecido o no, si el ganador habría de necesitar algún tipo de acuerdo, etc. Incluso a nivel provincial, pueden emerger otras, como si cierto partido va a lograr ese escaño que casi siempre se le escapa; si aquel otro partido va a quedarse, como siempre, sin representación, etc.

Nuevo vídeo en YouTube: "Causalidad: una charla con Carlos M. Madrid Casado"

Esta semana he tenido el placer y el honor de tener como invitado en mi canal a Carlos M. Madrid Casado para discutir el manido y usualmente maltratado tema de la causalidad. Lo hemos hecho desde varias perspectivas: la estadística, por supuesto; la de otras disciplinas con las que la estadística interactúa habitualmente, como la medicina, la física o la economía; y, finalmente, desde la filosófica, por ver qué se puede aportar desde esas coordenadas al asunto.

Nuevo vídeo en YouTube: "Modelos estadísticos vs comportamiento estratégico"

En el vídeo se hace referencia a una serie de materiales. Sus coordenadas son:

Universo y muestra: un ejemplo muy didáctico en el que La Caixa lo hace todo mal

Los manuales de estadística al uso introducen los conceptos de universo y muestra y tienden a ilustrarlos con ejemplos buenos. Pero los ejemplos buenos son útiles solo hasta cierto punto: ilustran, como digo, pero ni caracterizan ni delimitan. Los ejemplos malos, sin embargo, son muy útiles porque ayudan a trazar una frontera entre lo que es y lo que no es permisible.

Pero, ¿de dónde sacar buenos ejemplos malos? Aunque no es fácil, nuestros colegas de La Caixa Research han tenido la gentileza de ponernos uno a huevo: es Los precios de la luz están por las nubes, ¿y el importe de su recibo? (que ha sido recogido y glosado por el inefable elDiario.es aquí).