Una aplicación/ilustración casi "full Bayesian" del filtro de Kalman
Cuestiones que no vienen al caso me empujaron finalmente a escribir una entrada que llevaba creo que años aparcada: ilustrar el uso del filtro de Kalman desde una perspectiva explícitamente bayesiana, luego accesible.
Introducción
Esto va, en resumidas cuentas, de mejorar la precisión de un sensor (un GPS, p.e.) que proporciona información ruidosa sobre la posición de un objeto que se mueve en el espacio obedeciendo ciertas ecuaciones. En particular, voy a utilizar el caso de un móvil que parte del origen ($x_0 = 0$), con una velocidad inicial de $10$ y que está sometido a una aceleración constante de $-0.3$.