Estadística vs aprendizaje automático y algunos asuntos más
Cuando comparo valores reales contra estimados/predichos, tengo la costumbre de colocar los valores observados en el eje horizontal y las predicciones en el vertical. Así puedo ver si yerro por exceso o por defecto (con respecto a la línea, típicamente roja, $y = x$). Sin embargo, tanto en este artículo como en esta entrada de blog, se argumenta en favor de lo contrario.
Hay una diferencia sustancial entre el bayesianismo abstracto y el aplicado (o computacional): el primero siempre habla de aprendizaje secuencial y de encadenamiento de posterioris: la posteriori de un primer estudio con unos datos parciales se convierte automáticamente en la priori de uno posterior con un conjunto de datos adicional. En la versión práctica, solo es posible en ciertos casos concretos (p.e., cuando hay distribuciones conjugadas) pero no en general. En general uno obtiene una descripción de la posteriori en términos de una serie de muestras que no hay forma de utilizar después como priori. Sin embargo, pasan cosas como esta o esta