mcmc

¿Dónde son más frecuentes las muestras de una distribución en dimensiones altas?

Esta es una cosa bastante contraintituiva. Uno diría que en la moda, pero no es exactamente así. Veamos qué pasa con la distribución normal conforme aumenta la dimensión. En una dimensión son más frecuentes los valores próximos al centro: 1 2 hist(abs(rnorm(10000)), breaks = 100, main = "distribución de la distancia al centro") Pero en dimensiones más altas (p.e., 10), la cosa cambia: 1 2 3 4 5 6 7 library(mvtnorm) muestra <- rmvnorm(10000, rep(0, 10), diag(rep(1, 10))) distancias <- apply(muestra, 1, function(x) sqrt(sum(x^2))) hist(distancias, breaks = 100, main = "distribución de la distancia al centro") Lo más frecuente es obtener observaciones ya no próximas al centro sino en un anillo alrededor de él y a cierta distancia del mismo.

Optimización estocástica

r
Una de los proyectos en los que estoy trabajando últimamente está relacionado con un problema de optimización no lineal: tengo un modelo (o una familia de modelos) no lineales con una serie de parámetros, unos datos y se trata de lo que no mercería más explicación: encontrar los que minimizan cierta función de error. Tengo implementadas dos vías: La nls, que usa un optimizador numérico genérico para encontrar esos mínimos.

Sr. Python, muchas gracias por su candidatura; ya le llamaremos cuando... tenga modelos mixtos

Era casi todavía el siglo XX cuando yo, desesperado por hacer cosas que consideraba normales y que SAS no me permitía, pregunté a un profesor por algo como C pero para estadística. Y el profesor me contó que conocía a alguien que conocía a alguien que conocía a alguien que usaba una cosa nueva que se llamaba R y que podía servirme. Fue amor a primera vista, pero esa es otra historia.

ABC

ABC significa, entre otras cosas, approximate bayesian computation. Por lo que parece, consiste en calcular $latex P(\theta ,|, \text{datos})$ por el tradicional y directo método del rechazo. Es decir: Planteas un modelo generativo, con sus prioris y todo. Simulas casos, casos y casos. Te quedas con los que cumplen un criterio de aceptación. La distribución empírica de los parámetros en el subconjunto de los casos aceptados representa, en los libros está escrito, la distribución a posteriori.

Hamilton al rescate de Metropolis-Hastings

El algoritmo de Metropolis-Hastings se usa para muestrear una variable aleatoria con función de densidad $latex p$. Permite crear una sucesión de puntos $latex x_i$ que se distribuye según $latex p$. Funciona de al siguiente manera: a partir de un punto $latex x_i$ se buscan candidatos a $latex x_{i+1}$ de la forma $latex x_i + \epsilon$, donde $latex \epsilon$ es, muy habitualmente, $latex N(0, \delta)$ y $latex \delta$ es pequeño. De otra manera, puntos próximos a $latex x_i$.

Metropolis-Hastings en Scala

Tengo la sensación de que un lenguaje funcional (como Scala) está particularmente bien adaptado al tipo de operaciones que exige MCMC. Juzguen Vds. Primero, genero datos en R: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 datos <- rnorm(500, 0.