La distribución lognormal es la exponencial de una distribución normal. Su media, Wikipedia dixit, es $latex \exp(\mu + \sigma^2 /2)$.
Dada una muestra de la distribución lognormal (y supuesto, por simplificar, $latex \mu=0$), podemos calcular
su media y una estimación de su $latex \sigma$ y calcular $latex \exp(\sigma^2 /2)$ y uno pensaría que los valores deberían ser similares. Mas pero sin embargo,
library(ggplot2) set.seed(123) sigmas <- seq(1, 10, by = 0.
… (por motivos que importan pero no debo revelar a mis lectores) aprovecho para criticar a esos tipos que, vistiendo como yo, insisten reiteradamente a sus analistas en que les proporcionen un número. Un número que tiene que ser cerrado, indiscutible, pivotal.
A esos que gastan traje y corbata como yo hoy les horroriza la varianza. Le espantan, seguro, esos punticos que tan opotunamente coloca Kiko Llaneras alrededor de las medias de este estupendo
Del hombre medio (u homme moyen de Quetelet para los eruditos) ya hemos hablado antes: es un concepto decimonónico, de la época de los albores de la estadística, que permite argumentar alrededor de una construcción inexistente: el sujeto que está en la media de todo, la medida de la normalidad.
Pero buscad “factura media” en Google (entrecomillado) y veréis como en el siglo XXI todavía se argumenta alrededor de construcciones ideales similares.
El problema de hoy viene sugerido por la manera de encontrar un valor central –una medida de centralidad– en una serie de números $latex x_1,\dots, x_n$. A uno se le viene a la mente la media de dichos puntos, por supuesto. Pero la media no es sino el valor $latex \theta$ que minimiza
$$ \sum_i (x_i - \theta)^2.$$
En lugar de minimizar la distancia al cuadrado entre ese punto central y los de la serie, podríamos usar otras funciones.
Hoy he hecho limpieza de mi directorio de descargas. En él he encontrado unos cuantos PDFs de Eurostat, las habituales notas de prensa que resumen indicadores europeos por país (p.e, este o este).
Hojeando unos cuantos por encima no he podido dejar de advertir la excentricidad de España. Somos casi un outlier, se nos mire por donde se nos mire. Y cuando nos parecemos a algún otro país, es el equivocado.
El Banco Central Europeo publicó un estudio sobre la riqueza de los hogares europeos en abril de 2013. A partir de él, el Bundesbank publicó otro informe que subrayaba las diferencias en riqueza entre los hogares alemanes y, supongo que entre otros, los españoles.
El informe de BCE recogía la media y la mediana del patrimonio de los hogares por países (junto con otras variables adicionales, como la renta, el nivel de endeudamiento, etc.
Sí, hoy me siento reivindicado. En efecto. El otro día escribí una entrada titulada ¿… coma cero dos por ciento? ¡Anda ya!. Y hoy Andrew Gelman, abundando en los mismos temas, titula la suya “1.7%” ha ha ha.
¿El tema de fondo? La obsesión enfermiza por la precisión y ese miedo atávico a la variabilidad y la incertidumbre que acompañan naturalmente a los fenómenos cotidianos.
David Cabo me hizo llegar el otro día este artículo, To what degree is the ECB flying blind? Y con buen criterio, porque, como veremos, toca temas ya conocidos de los lectores de estas páginas.
El artículo se resume en lo siguiente: si un día el Banco Central Europeo va a sumar a sus funciones la de la supervisión bancaria, va a encontrarse los dos problemas siguientes:
La confidencialidad de los datos Sus niveles de desglose (y agregación) Son dos problemas, además, interrelacionados.
Hoy me han preguntado una cosa algo rara. Era alguien del departamento de riesgos de una conocida entidad financiera que quería saber cómo calcular (con SAS) la media del LTV. El LTV, aunque tiene otras acepciones, significa en este contexto loan to value, el cociente entre el valor de un préstamo y valor del colateral que lo respalda.
(Este LTV tiene que ver con el famoso le financiamos el 80% del valor de la inversión de otras épocas.
Los patriotas españoles del siglo II a.C. peleaban por la estepa lusitana contra los romanos y abominaban del alcantarillado y los acueductos. Los del siglo XVI, seguían el caminar del sol sobre el azul del mar para blanquear un subcontinente con el empuje de sus caderas. Los del XIX fusilaban a alcaldes liberales en las plazas de las villas altonavarras.
Y los españoles patriotas de junio de 2012 leemos el informe de estabilidad financiera del Banco de España.
Tu proyecto de IT puede contener más riesgo del que piensas. De verdad. Dan fe de ello Bent Flyvbjerg y Alexander Budzier.
Los autores describen en el artículo que he enlazado encima varios proyectos que fracasaron estrepitosamente y proporcionan algunos consejos para evitar ese tipo de desenlaces. Sin embargo, para quienes siguen esta bitácora, la reflexión más interesante es la siguiente:
Al focalizarse en las medias en lugar de los casos extremos más dañiños, la mayor parte de los gestores y consultores han ignorado el verdadero problema.
La percepción del riesgo es el juicio subjetivo que hacen las personas sobre la relevancia o severidad de un riesgo. Esta percepción tiene una dimensión matemática por naturaleza y que tiene que ver con la habilidad del sujeto para manejarse con las cifras. Pero también tiene una dimensión no matemática: mucha gente, de hecho, reacciona de una manera que pudiera parecer incoherente con su visión racional de las probabilidades implicadas.
Leí hace un tiempo The flaw of averages, un libro poco convencional que recomiendo a mis lectores. Su objetivo último es encomiable: conseguir que personas sin mayor preparación matemática o estadística pero obligadas a tomar decisiones frente a la incertidumbre apliquen el sentido común y entiendan claramente unos principios mínimos.
Para lograrlo, asume una postura tal vez anti-intelectualista, tal vez herética. Piensa el autor —¿con motivo?— que, a ciertas personas, conceptos tales como varianza, media, teorema central del límite o función de densidad les dificultan, más que facilitan, la comprensión de lo que la incertidumbre realmente es y de cómo puede afectarlos.