Números

Anumerismo: ¿atenuante o agravante?

Me pasaron hace unos días una sentencia de la Agencia de Protección de Datos acerca de un caso (y tienen muchos y variopintos) concerniente a alguien que protestó porque cierta entidad bancaria de la que no era cliente había accedido a su informe crediticio sin su autorización.

Aparentemente, desde dicha entidad habían leído su informe en cuatro ocasiones en cuatro fechas distintas. Y eso, al parecer, no es legal y está penado con multas como la de 40 001 euros que le impusieron a la entidad.

Anonimidad y cantidad de información

Juguemos a un juego: pienso el nombre de uno de los 45M de ciudadanos españoles y tenéis que acertarlo. Me podéis hacer preguntas, pero sólo de esas cuya respuesta es sí o no. ¿Cuántas preguntas deberíais hacerme?

Pues unas 25 o 26 porque $latex log_2 4.5e7 = 25.42$. La demostración es sencilla: suponed que tenéis una lista con los nombres de todos los ciudadanos (a razón de 45 por hoja y 200 hojas por tomo, ocuparían 5000 de ellos). La primera pregunta podría ser: el individuo que has pensado, ¿está en los tomos 1-2500? Luego, dependiendo de la respuesta, ¿del 1250 al 2500? Y etc. con la búsqueda binaria. En total, 25 o 26 veces.

Facetas en ggplot2 (al hilo de otra gañanada)

Hace años que no leo Expansión con la frecuencia de antaño. Los motivos son muchos. Pero el otro día, casi por nostalgia, pagué los 1.60 euros que no vale.

De entre los gañanes que trabajan en dicho diario hay uno que lo es más que todos: el responsable de las gráficas. En tiempos me irritaba. Luego me fui acostumbrando. Al final, casi, casi, le cogí cariño. Acabé interpretando sus gañanadas casi como si me dijese: “pues por aquí andamos, trabajando; de saludo, bien; y tus cosas ¿cómo van?”.

Otra sobre polígrafos, terrorismo y periodistas anuméricos

Dice el diario El País que científicos británicos desarrollan un sistema que permite saber si alguien no está diciendo la verdad analizando su rostro.

El aparato, según el artículo

[…] podría ser utilizado para cuestiones de seguridad, como, por ejemplo, en los aeropuertos para identificar a potenciales criminales o terroristas.

Añade después que

[…] el sistema será capaz de coger al 90 % de los que mienten, porcentaje similar al obtenido por el polígrafo

Datos patrimoniales de los senadores

David Cabo, de Pro Bono Público colgó el otro día una hoja de cálculo en Google Docs con referencias a las declaraciones del patrimonio (véase un ejemplo) a las que están ahora obligados los senadores y que cuelgan de la página de su benemérita y utilísima institución. Dado que los datos están en un formato no legible automáticamente, solicitó la colaboración de voluntarios para tabular la información.

Rápidamente logró completarse la tarea. Y ahora me he molestado en extraer una selección de los datos (quitando columnas descriptivas, etc.) para que los aficionados a R se entretengan sacándoles punta.

Diez pasos para construir indicadores compuestos

“[…] es difícil imaginar que el debate sobre el uso de indicadores agregados llegue algún día zanjarse  […] los estadísticos desconfían de ellos puesto que gran parte del trabajo de recolección y análisis de datos se “desvirtúa” o “esconde” detrás de un único número de dudoso valor. Otros, por su parte, encuentran irresistiblemente tentadora la posibilidad de resumir procesos complejos y lábiles (por ejemplo, sostenibilidad, etc.) en una cifra con la que comparar el desempeño de los distintos países.”

Google, Motorola, móviles, patentes e ideas

La noticia de que Google acaba de comprar la división de telefonía móvil de Motorola ha suscitado una doble justificación por parte de los analistas:

  • Que Google pretende desarrollar un modelo vertical de negocio en telefonía móvil (i.e., cubriendo todo el ciclo del producto: diseño y fabricación de terminales, desarrollo del software, publicidad y otros servicios).
  • Que Google quiere hacerse con las patentes de Motorola.

Aunque los motivos últimos sean, probablemente, una mezcla de estos y, posiblemente, otros motivos, el factor patentes no es circunstancial. En julio, Google se quedó sin las 6000 patentes de la extinta Nortel al verse superado en la subasta por un consorcio de empresas (Apple, RIM, Sony y otras) que pagó 4500 millones de dólares por ellas.

El borrador de Ley de transparencia, disponible

Hace unos días, el mismo en el que se anunciaron las elecciones anticipadas (en España) fue publicado el borrador de lo que podría llegar a convertirse en la futura Ley de transparencia.

Aunque el actual gobierno no será ya el encargado de tramitarlo (y a saber qué hará el que llegue), merece la pena echarle un vistazo. Tengo comentarios al respecto, muchos de hecho. Y en gran medida coinciden con los que se expresan en este otro blog.

¿Qué es un banco? ¿Qué son las pruebas de resistencia? (En primera derivada)

En primera derivada, un banco es un señor que pone 10, capta 90 en depósitos de ahorradores —a los que da un interés del 4 %— y presta 100 al 5 %. El código en R que aparece a continuación indica cuál es el beneficio del señor:

capital <- 10
depositos <- 90

int.dep   <- 0.04
int.pres  <- 0.05

prestamos <- capital + depositos
ingresos <- prestamos * ( 1 + int.pres )
gastos   <- depositos * ( 1 + int.dep  )

beneficio <- ingresos - gastos
rentabilidad.capital <- 100 * beneficio / capital

Quien lo ejecute comprobará cómo el señor obtiene un jugoso beneficio. Además, el señor podría hacerlo aún más jugoso incrementando el valor de los depósitos, es decir, captando más ahorro con el mismo capital inicial. Queda como ejercicio para mis lectores repetir los cálculos anteriores con depositos <- 190, etc.

Y Kenia qué, ¿eh?

—Sí, ya sabemos que en EE.UU. e Inglaterra las cosas son distintas, pero nosotros semos mediterráneos y tenemos sol y aceite de oliva.

—Además, uno siempre puede comprar la publicación España en cifras en las librerías Índice a un precio popular establecido anualmente en el BOE (o, incluso, ¡descargarla en PDF gratis!).

Ejque

Etc.

Pero, y Kenia qué, ¿eh? ¿Nos vamos a dejar ganar por Kenia?

Nassim Taleb y el problema de la inferencia

Según el DRAE, inferir consiste en s_acar una consecuencia o deducir algo de otra cosa_. Estadísticos, economistas, económetras y muchos otros lidian siempre con el llamado problema de la inferencia: ¿es posible generalizar a sucesos aún no observados los resultados que parecen deducirse de los datos recogidos?

Nassim Taleb, empiricista y escéptico, es un pensador y polemista que cuestiona la fe que muchos depositan en teorías y métodos. De lo mucho que podía hablarse de él, me limitaré a subrayar que gran parte de sus reflexiones están contenidas en el muy recomendable libro El cisne negro y que los faltos de tiempo podrán averiguar lo más de ellas en esta conferencia suya de apenas una hora.

Disponible el borrador de la ley de acceso a la información

Ha sido publicado recientemente un borrador de lo que pudiera convertirse en la futura Ley de Transparencia española. Quiere esta ley regular las obligaciones de las administraciones públicas en lo concerniente a la difusión de los datos que obran en su poder y no tiene desperdicio su exposición de motivos, que comienza así:

El reconocimiento y garantía del derecho de los ciudadanos a acceder a la información pública es una práctica de buen gobierno. La transparencia constituye una eficaz salvaguarda frente a la mala administración, posibilita a los ciudadanos conocer mejor y vigilar el ejercicio de las potestades, la prestación de los servicios y el empleo de los recursos públicos y estimula a los poderes públicos a funcionar de modo eficiente. Un gobierno transparente es, por ello, un gobierno que genera confianza y que rinde un mejor servicio a la sociedad.

Estadística "como Dios manda"

No sé si sería ésa la traducción más afortunada de straight statistics. Probablemente no. Pero tal vez recoge la idea. Y tampoco tengo esta noche tiempo ni cabeza para distingos y connotaciones.

Pero supongo que interesará a mis lectores conocer…

… una campaña promovida por periodistas y estadísticos para contribuir a mejorar la comprensión y el uso de la estadística por el gobierno, los políticos, las empresas, los anunciantes y los medios de comunicación. Denunciando las malas prácticas y premiando las buenas, esperamos contribuir a restaurar la confianza pública en la estadística.