Probabilidad

¿Curiosidades de la lotería?

Tenía guardado un enlace de un artículo del periódico sobre curiosidades de la lotería. Describe dos hechos curiosos:

  • Que la terminación más repetida, el 5, ha aparecido 32 ocasiones en 201 gordos (se ve que ha habido 200 sorteos, pero un año hubo, cosas de la vida, dos gordos).
  • Que dos números, el 15640 y el 20297 han sido gordos en dos ocasiones.

Una pregunta, pues, para mis lectores: ¿qué es más improbable, que la terminación más frecuente haya ocurrido en 32 (o más) ocasiones o que haya habido dos (o más) gordos repetidos?

Un problema de probabilidad

Como es viernes, propongo un problema de probabilidad. Es el siguiente:

En un curso de inglés elemental hay 5 alumnos y 4 alumnas. En el intermedio, 7 y 3. En el avanzado, 4 y 4. Se promociona a un alumno (uso el masculino aquí genéricamente) del elemental a intermedio. Se elige luego a un alunmo (uso genérico del masculino, de nuevo) del intermedio y resulta ser un hombre. ¿Cuál es la probabilidad de que el alumno promocionado fuese también hombre?

Puedes probar cualquier cosa (con paciencia)

Puedes _probar _prácticamente cualquier cosa. Con paciencia, claro. Por ejemplo, coge una moneda de tu bolsillo. Puedes probar que tiene un sesgo: salen más caras (o cruces, da igual) de lo que cabría esperar.

No lo vas a probar como los gañanes, no. Lo vas a probar usando los mismos métodos con los que se aprueban los medicamentos u otras verdades relevantísimas: mostrando al mundo un p-valor pequeñajo, por debajo de 0.05. Veamos cómo.

Sobre la economía del lenguaje

De acuerdo con una observación de Zipf (y supongo que de muchos otros y que no hay que confundir con su ley), la longitud de las palabras más corrientes es menor que las que se usan menos frecuentemente.

Un estudio reciente, Word lengths are optimized for efficient communication, matiza esa observación: la cantidad de información contenida en una palabra predice mejor la longitud de las palabras que la frecuencia de aparición pura. En una comparación entre diversos idiomas europeos, parece manifestarse que palabras que aportan poca información son breves; las que aportan mucha, más largas.

Si Feller levantase la cabeza...

Tengo un amigo físico que trabaja supervisando el funcionamiento una máquina de radioterapia. Se dedica, esencialmente, a achicharrar células cancerígenas con chorros de radioactividad. Me contaba recientemente cómo hay pacientes que responden positivamente y cómo con otros con un perfil similar, aun sometidos a dosis de radioactividad muy superiores, no hay forma humana de hacer que el tumor remita. Éste y muchos otros casos análogos hacen pensar a la comunidad médica que no hay enfermedades sino enfermos y que los remedios que bien valen para uno, pueden no valer para otro.

Comparación de variables aleatorias de Poisson

El otro día apareció publicado en Significance una comparación entre el número de tarjetas recibidas por las selecciones inglesas de fúlbol masculina y femenina.

Los hombres habían recibido 196 tarjetas en los 48 partidos disputados en el periodo de referencia y las mujeres, 40 en 24 partidos. El promedio de tarjetas, por lo tanto, de 4.1 y 1.7 respectivamente. Y la pregunta es: ¿hay motivos razonables para pensar que las mujeres juegan menos sucio?

Paella sin arroz con sabor a judías enlatadas

El otro día leí el artículo A Prototype Model of Stock Exchangede G. Caldarelli, M. Marsili y Y.C. Zhang. La promesa que me ofrecía era la de la creación de un sistema relativamente realista de los agentes que operan en los mercados financieros que diese lugar a una evolución de precios con propiedades similares a las observadas.

Sin embargo, el planteamiento, interesante en un principio, se deshinchó enseguida:

  • El modelo planteado por los autores ni siquiera aspira a representar los aspectos más distintivos del mercado: en lugar de agentes tremendamente desiguales en tamaño y entrelazados en una maraña de dependencias e influencias mutuas, los agentes son todos equivalentes en tamaño (si bien es cierto que en el estado estacionario de la simulación los ingresos adquieren una distribución dada por una ley de potencias) y que actúan de manera independiente entre sí una vez observados los precios en el mercado.
  • Los resultados, una serie temporal de precios, es calificada por los autores como muy rica, aunque enseguida pasan, en un dechado de honradez, a apuntar diferencias más o menos manifiestas entre sus características estadísticas y las observadas en mercados reales.

Entiendo y aplaudo el virtuosismo técnico empleado por los autores del artículo y la implementación de los algoritmos involucrados. No obstante, tras leerlo, me embriaga una extraña sensación que no debe de ser muy distinta de aquellos comensales a los que se les anunció paella, se les advirtió que no traía arroz ni gambas y comprobaron después que sabía a judías de lata.

Sobre el libro "The flaw of averages"

Leí hace un tiempo The flaw of averages, un libro poco convencional que recomiendo a mis lectores. Su objetivo último es encomiable: conseguir que personas sin mayor preparación matemática o estadística pero obligadas a tomar decisiones frente a la incertidumbre apliquen el sentido común y entiendan claramente unos principios mínimos.

Para lograrlo, asume una postura tal vez anti-intelectualista, tal vez herética. Piensa el autor —¿con motivo?— que, a ciertas personas, conceptos tales como varianza, media, teorema central del límite o función de densidad les dificultan, más que facilitan, la comprensión de lo que la incertidumbre realmente es y de cómo puede afectarlos. ¡Cuánta gente se conforma con conocer la media (p.e., de una estimación)!

250 aniversario de la muerte de Bayes

Cumpliéndose el 250 aniversario de la muerte de Thomas Bayes (fue el 17 de abril, de hecho), como homenaje, publico hoy una foto del autor al lado de su tumba en el cementerio de Bunhill Fields, en Londres.

Nota: es la tumba blanca que aparece casi en el centro. La tomó mi viejo amigo Raúl Aguaviva un día que acabamos perdidos buscando el Museo Británico por un barrio que resultó estar no lejos de Angel. Shame on us!

¿Qué nos jugamos? (Addenda: no queremos jugarnos nada)

Al tratar el principio de Kelly el otro día omití, craso error, decir que dicho criterio nos invita a no apostar en casi ninguna circunstancia. En efecto, siendo el tamaño de la apuesta —más propiamente, el porcentaje del capital que apostar— el que propone el citerio igual a

$$ x = \frac{bp-(1-p)}{b}, $$

cabe preguntarse cuándo es éste mayor que cero. Y lo es cuando

$$pb - (1-p) > 0, $$

es decir, cuando el juego es favorable. En efecto, el término de la izquierda de la desigualdad anterior es la esperanza del beneficio obtenido en cada partida. Y si esta cantidad ha de ser positiva, el principio de Kelly recomienda no jugar ni a la ruleta, ni a la lotería ni invertir en forex… de no ser tú mismo el casino, lotero o banco que cobra comisiones.

¿Qué nos jugamos?

Imagine que le proponen participar reiteradamente en un juego de azar. Dispone de una cantidad de dinero inicial, $latex a$ euros, y puede apostar en un juego en el que o gana con probabilidad $latex p$ $latex b$ veces la apuesta o la pierde enteramente. Puede repetir el juego cuantas veces quiera  y apostar el porcentaje que desee de su dinero.

¿Cuánto se apostaría? ¿Qué porcentaje de su capital inicial se jugaría?

Terrorismo y sesgos en la percepción de la improbabilidad

En el Financial Times del 3 de mayo aparece un artículo de Gideon Rachman que es de los pocos que merece ser leído sobre el fatigoso y como se verá poco relevante tema de la muerte de Bin Laden. Y es interesante —y relevante para los lectores de esta bitácora— porque toca un tema del que ya nos hemos ocupado y que seguro que revisitaremos: el de las probabilidades subjetivas y, en particular, el de las distorsiones con las que los seres humanos percibimos y calibramos probabilidades pequeñas.

Incertidumbre, juicios y sesgos

Recomiendo encarecidamente la lectura del artículo Judgment under Uncertainty: Heuristics and Biases de D. Kahneman y A. Tversky. En pocas palabras, trata sobre dos cosas:

  • los atajos mentales que utiliza el ser humano para asociar probabilidades subjetivas a eventos y, sobre todo,
  • los sesgos y errores a los que conducen dichos atajos.

A través de una serie de experimentos, los autores revelan cómo individuos —incluso con una sólida formación cuantitativa— yerran sistemáticamente al enfrentarse con determinado tipo de problemas.