A veces toca comparar dos variables aleatorias: ¿cuál de dos juegos preferirías? Hay muchas maneras de resolver ese problema, de una larga historia, con mejor o peor fortuna. En el fondo, hay que crear un orden en el conjunto de las variables aleatorias y, en el fondo —y perdónenme mis excolegas matemáticos—, proyectarlas de alguna manera sobre los números reales.
Si este número real se elige de alguna manera razonable (p.
[Esta es la cuarta y última (por el momento) de una serie de entradas sobre el tema que se anuncia en el título.]
En la tercera entrega de la serie se introdujo el frecuentismo como una particular manera de resolver el problema de minimización asociado a la expresión
$$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta.$$
En esta entrada se introducirá el bayesianismo de manera análoga con el concurso del teorema de Fubini (que, recuérdese, permite conmutar las integrales):
[Esta es la tercera de una serie de cuatro o cinco entradas sobre el tema que se anuncia en el título.]
Terminó la segunda entrada de anunciando cómo la manera de operar con la expresión
$$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta$$
determina las dos grandes corrientes dentro de la estadística. Para entender la primera, el frecuentismo, se debe reescribir la expresión anterior como
$$L(\hat{\theta}) = \int_\theta \left[\int_X L(\theta, \hat{\theta}) p(X | \theta) dX \right] p(\theta)d\theta$$
[Esta es la segunda de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.]
Terminó la primera entrada de la serie reconociendo que aún no se había entrado en materia estadística, que para ello habría que hablar de datos. Y, en efecto, la estadística principia cuando, por decirlo de manera sugerente aunque breve e imprecisa, $\theta$ genera unos datos $X$ que proporcionan pistas sobre su naturaleza.
[Esta es la primera de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.]
$\theta$ es un valor desconocido. Por algún motivo, necesitamos encontrar un valor $\hat{\theta}$ —que podríamos llamar de cualquier manera, pero que, por lo que sigue, será podemos convenir en denominar estimación de $\theta$— tal que minimicemos una determinada función de error
$$L(\theta, \hat{\theta}).$$
Por fijar ideas, un ejemplo: alguien nos puede haber dicho que ha pensado un número (entero) entre el 1 y el 10, $\theta$ y que nos dará un premio si lo acertamos, es decir, si proporcionamos un $\hat{\theta}$ y resulta que $\theta = \hat{\theta}$.
Previo:
Hoy he oído el término dudacionista (de la vacuna) por primera vez. Me parece, por lo que contaré después, mucho más apropiado —y en otros que también aclararé, mucho menos— que negacionista para muchos de los casos que conozco. Varios dudacionistas me han preguntado sobre mi opinión sobre su postura. Por referencia (mía y suya) y para poder contestar a los que vengan con una url, escribo lo que sigue.
En Some Class-Participation Demonstrations for Introductory Probability and Statistics tienen los autores un ejemplo muy ilustrativo sobre lo lo relativo (en oposición a fundamental) del papel de la máxima verosimilitud (y de la estadística puntual, en sentido lato) cuando la estadística deja de ser un fin en sí mismo y se inserta en un proceso más amplio que implica la toma de decisiones óptimas.
Se trata de un ejemplo pensado para ser desarrollado en una clase.
Cierta gente, mucha, está mostrando su sorpresa en estos días acerca de las discrepancias entre lo que dicen las encuestas por un lado y el consenso de los mercados de apuestas con respecto a lo de Trump. Por ejemplo, aquí, aquí o
🇺🇸 Ninguno pronóstico tiene a Trump favorito. Pero hay diferencias sensibles: el modelo de The Economist le da solo un 4% de opciones (1 de 20), mientras que las apuestas las elevan hasta el 34% (1 de 3).
Aquí se recomienda, con muy buen criterio, no realizar clasificación pura, i.e., asignando etiquetas 0-1 (en casos binarios), sino proporcionar en la medida de lo posible probabilidades. Y llegado el caso, distribuciones de probabilidades, claro.
La clave es, por supuesto:
The classification rule must be reformulated if costs/utilities or sampling criteria change.
Traigo a la consideración de mis lectores Sobre la Sostenibilidad Fiscal de España (II), un artículo de hace un tiempo que es una larga perífrasis alrededor de principios cualitativos muy contrastados sobre la gestión de riesgo (bajo incertidumbre, si se me tolera el pleonasmo). La conclusión es bien sabida pero el camino recorre una serie de hitos que mucho tienen que ver con lo que suelo escribir por aquí. Arranca con una afirmación desconcertante:
En Circiter estamos negociando con unos clientes potenciales acerca de, tal como nos dijeron inicialmente, construir un modelo. Todo bien.
En la última reunión surgió la pregunta (¡qué vergüenza por mi parte no haberla planteado mucho antes!): ¿cómo habría que usarlo para dar soporte al negocio? La discusión subsiguiente dejó claro que habría que cambiar sustancialmente la aproximación al modelo. Por ejemplo:
Era tanto o más importante la discriminación intra-sujeto que la entre-sujeto (es decir, importaba más lo que el modelo pudiera decir de los ítems de cada sujeto que las diferencias que pudiera mostrar entre sujetos).
A raíz de mi entrada del otro día he tenido una serie de intercambios de ideas. Que han sido infructuosos porque no han dejado medianamente asentadas las respuestas a una serie de preguntas relevantes.
Primero, contexto: tenemos un algoritmo que decide sobre personas (p.e., si se les concede hipotecas) usando las fuentes de información habitual. El algoritmo ha sido construido con un único objetivo: ser lo más eficiente (y cometer el mínimo número de errores) posible.
Agradezco mucho el comentario de José Luis a mi entrada/pregunta ¿Existiría algún caso de uso de la estadística que no sea materia prima para la toma de decisiones informadas?. Dice:
¿Y la mera estadística descriptiva que aparece en la investigación científica? Distribución de tallas de especies no conerciales, dinámicas de población, descripciones ecológicas….?
Y creo que es una aportación tan valiosa que merece toda una entrada más que una mera contestación: la pregunta que plantea es tan legítima y como fructífera y fomentadora de debate.