Comparaciones vs efectos y cuatro asuntos más
Aquí se lee:
Preferimos el término “comparaciones” al de “efectos” en tanto que el primero es más general que el segundo. Una comparación es un efecto solo en aquellos casos en los que el modelo tiene una interpretación causal válida.
En Intrumental variable regression and machine learning se discute cómo aplicar la técnica de las variables instrumentales no con regresiones lineales sino con otro tipo de modelos más generales (y se ilustra con random forests).