Artículos

Intervalos de confianza y la velocidad de la luz

La interpretación puramente frecuentista de los intervalos de confianza es que el 95% de ellos contendrán el valor de interés en cuestión. Veamos qué nos cuenta al respecto la historia de la medición de la velocidad de la luz contemplada a través de la lectura de Determining the Speed of Light (1676-1983): An Internalist Study in the Sociology of Science primero en forma tabular (nota: en la fuente original hay una tabla más extensa de la que esta es resumen),

Comentarios varios sobre un artículo de El País sobre MOMO

[Esta entrada ha sido enmendado con respecto a cómo fue publicada originalmente por los motivos que abajo se indican.]

El artículo es El Instituto de Salud Carlos III subestima las muertes de la segunda ola y los comentarios, estos:

El artículo trata un tema conocido de muchos, la infraestimación que hace el actual sistema MOMO de los excesos de mortalidad y cuyos motivos comenté extensamente el otro día. Dice, muy acertadamente:

¿Modelos para ordenar datos?

Ayer leí este resumen de este artículo que propone y discute un algoritmo novedoso y basado en ciencia de datos para ordenar datos y hacerle la competencia a quicksort y demás. Reza y promete:

The results show that our approach yields an average 3.38x performance improvement over C++ STL sort, which is an optimized Quicksort hybrid, 1.49x improvement over sequential Radix Sort, and 5.54x improvement over a C++ implementation of Timsort, which is the default sorting function for Java and Python.

Socialismo y fascismo en Italia: una reflexión sobre la causalidad y las microcausas

[Una entrada más bien especulativa acerca de esbozos de ideas ocurridas durante un paseo vespertino por Madrid y que apunto aquí por no tener una servilleta a mano.]

El artítulo War, Socialism and the Rise of Fascism: An Empirical Exploration me ha hecho volver a reflexionar sobre el asunto de la causalidad (al que, además, debo un apartado en siempre inacabado libro de estadística para los mal llamados científicos de datos).

Los orígenes de la sicología WEIRD

Es oportuno en estos tiempos que corren aprender los unos y recordar los otros por qué los WEIRD (occidentales, educados, industrializados, ricos y democráticos, recuerdo) somos excepcionales (en las acepciones del término que a cada cual le plazcan más).

De eso trata The Origins of WEIRD Psychology, que se resume en tres puntos:

  • Los WEIRD somos realmente weird (o comparativamente anómalos con respecto a con quienes compartimos mundo).
  • El motivo es la distinta concepción de las relaciones familiares.
  • Que fue causado por la subversión a la que la iglesia (católica) causó en los modos familiares pretéritos prácticamente desde la antigüedad.

Tiene muchas lecturas. Tantas que para qué ofrecer la mía.

Distribuciones (¿de renta? ¿solo de renta?) a partir de histogramas

En el primer número de la novísima revista Spanish Journal of Statistics aparece un artículo con un título tentador: Recovering income distributions from aggregated data via micro-simulations.

Es decir, un artículo que nos puede permitir, por ejemplo, muestrear lo que la AEAT llama rendimientos a partir de lo que publica (aquí):

Uno de los métodos de los que sostienen el ignominioso a mí me funciona está basado en el modelo

Muchos cocineros con la misma receta...

[Iba a guardar un enlace a este artículo entre mis notas, pero, qué demonios, lo dejo aquí, público, porque así lo encuentro yo y lo encontramos todos.]

¿Qué pasa/puede llegar a pasar si muchos científicos de datos analizan los mismos datos en busca de una respuesta a la misma cuestión? Una de las posibles respuestas está en Many Analysts, One Data Set: Making Transparent How Variations in Analytic Choices Affect Results. Y por evitaros un click,

¿Un "Instituto Nacional de Datos"?

Por motivos que algún día contaré, me está tocando leer una serie de documentos muy bizarros (en su acepción bárbara). De entre todos, el que se lleva la palma es el titulado Estrategia Española de I+D+I en Inteligencia Artificial, promovido por el ministerio del ramo y elaborado por la Secretaría General de Coordinación de Política Científica del Ministerio de Ciencia, Innovación y Universidades y el Grupo de Trabajo en Inteligencia Artificial GTIA.