Estadística

¿Dónde son más frecuentes las muestras de una distribución en dimensiones altas?

Esta es una cosa bastante contraintituiva. Uno diría que en la moda, pero no es exactamente así.

Veamos qué pasa con la distribución normal conforme aumenta la dimensión.

En una dimensión son más frecuentes los valores próximos al centro:

hist(abs(rnorm(10000)), breaks = 100,
    main = "distribución de la distancia al centro")

Pero en dimensiones más altas (p.e., 10), la cosa cambia:

library(mvtnorm)
muestra <- rmvnorm(10000, rep(0, 10),
    diag(rep(1, 10)))
distancias <- apply(muestra, 1,
    function(x) sqrt(sum(x^2)))
hist(distancias, breaks = 100,
     main = "distribución de la distancia al centro")

Hay mil motivos para criticar una regresión "trucha", pero una R² baja no es uno de ellos

Todo esto arranca con el tuit:

Esa gráfica, extraída de un documento de la OCDE, creo, fue uno de los argumentos esgrimidos por JR Rallo para defender cierta postura que no viene al caso. Lo relevante para estas páginas es que fue contestado y protestado por muchos —de algunos de los cuales, dada su autoproclamada condición de divulgadores científicos, cabría esperar más— en términos exclusivamente de lo pequeño de la R².

Separación perfecta en el modelo de Poisson

El asunto de la separación perfecta en el modelo logístico es sobradamente conocido. Solo quiero añadir al respecto dos cosas que no se suelen decir:

  • Es un dolor que solo duele a los frecuentistas que no usan regularización (y van quedando cada vez menos de esos).
  • Que no es malo sino bueno: ¿qué cosa mejor que tus datos puedan responder categóricamente las preguntas que les planteas (supuesto, claro, está, un N suficientemente grande).

Lo que es menos conocido es que el problema de la separación perfecta también puede afectar a la regresión de Poisson.

Simpson sobre la desigualdad

Simpson, un viejo amigo de estas páginas, nos enseña, por ejemplo, cómo es posible que los salarios desciendan a lo largo de todas sus subcategorías y que, a la vez, crezcan en promedio en el tiempo. Basta para ello que se reduzca el peso la proporción de los trabajos peor pagados en la economía.

Los institutos estadísticos, a la hora de estimar el índice de precios, son conscientes del problema y elaboran cestas de la compra más o menos ideales (a lo Quetelet) y calculan su precio a lo largo del tiempo.

¿Qué modelas cuando modelas?

Ahora que estoy trabajando en el capítulo dedicado a la modelización (clásica, frecuentista) de mi libro, me veo obligado no ya a resolver sino encontrar una vía razonable entre las tres —¿hay más?— posibles respuestas a esa pregunta.

La primera es yo modelo un proceso (o fenómeno), los datos llegan luego. Yo pienso que una variable de interés $latex Y$ depende de $latex X_i$ a través de una relación del tipo

Sobre la relación entre la teoría de la relatividad y la regresión logística

Según la teoría de la relatividad, las velocidades (lineales) se suman así:

v1 <- 100000
v2 <- 100000
velocidad_luz <- 300000

suma_relativista <- function(x,y){
  (x + y) / (1 + x * y / velocidad_luz^2)
}

suma_relativista(v1, v2)
# 180000

Lo que es todavía menos conocido es que esa operación es equivalente a la suma ordinaria de velocidades a través de una transformación de ida y vuelta vía la arcotangente hiperbólica (véase esto). En concreto:

f1 <- function(x) {
  atanh(x / velocidad_luz)
}

f2 <- function(x) {
  velocidad_luz * tanh(x)
}

f2(f1(v1) + f1(v2))
# 180000

Ahora imaginemos un universo donde la velocidad máxima no es la de la luz, sino que solo están permitidas las velocidades entre 0 y 1:

La interpretación de "significativo" en un caso muy concreto

Comienzo por el final:

En el gráfico anterior se aprecian unos datos, generados mediante

n <- 100
x <- 1:n

y_base <- cos(2 * pi * x / 100)
y <- y_base + rnorm(n, 0, .4)

datos <- data.frame(x = x, y_base = y_base, y = y,
                    cos1 = cos(2 * pi * x / 100),
                    cos2 = cos(4 * pi * x / 100))

a los que se ha ido añadiendo un ruido progresivamente, es decir, una serie de outliers artificiales.

Las líneas rojas representan la predicción realizada mediante un modelo de segundo orden de Fourier (si se me permite), es decir,

Encuestas (electorales), medios y sesgos

Me he entretenido estos días en crear un modelo que represente la siguiente hipótesis de trabajo:

Los encuestadores electorales combinan tres fuentes de información: sus propios datos, el consenso de los restantes encuestadores y la voz de su amo, es decir, el interés de quien paga la encuesta.

Es un modelo en el que se introduce (y se mide) el sesgo que introduce cada casa en los resultados. De momento (¡no fiarse!, léase lo que viene después) he obtenido cosas como estas (para el PP):

La lotería del hardware y la cámara de resonancia académica

El artículo The Hardware Lottery es, hasta cierto punto, informativo. En el fondo, no dice nada que no supiésemos ya: que ciertas ideas, algoritmos, procedimientos, métodos, en diversas disciplinas (¡no en matemáticas!) triunfan esencialmente porque les toca la lotería del hardware. No es que sean las mejores desde una perspectiva actual —podría usar aquí los términos etic y emic a lo ovetense— sino que fueron afortunados y bendecidos por el hecho de estar a la (típicamente, medianeja) altura de los tiempos medidos en términos del desarrollo del hardware.

Máxima verosimilitud vs decisiones

En Some Class-Participation Demonstrations for Introductory Probability and Statistics tienen los autores un ejemplo muy ilustrativo sobre lo lo relativo (en oposición a fundamental) del papel de la máxima verosimilitud (y de la estadística puntual, en sentido lato) cuando la estadística deja de ser un fin en sí mismo y se inserta en un proceso más amplio que implica la toma de decisiones óptimas.

Se trata de un ejemplo pensado para ser desarrollado en una clase. Consiste en un juego en el que el profesor muestra a los alumnos un bote con monedas y les propone que traten de acertar su número exacto. En tal caso, los alumnos se la quedan y pueden repartirse el contenido.

Análisis de eventos recurrentes

He sido fan del análisis de los eventos recurrentes desde antes incluso de saber que existía tal cosa formalmente.

Es una extensión del análisis de la supervivencia donde resucitas y vuelves a morirte a lo Sísifo. Es decir, en el análisis de la supervivencia, te mueres y ya; por eso, si quieres extender el análisis de la supervivencia a asuntos tales como compras de clientes es necesario usar el calzador muy heterodoxamente.

"Introducción a la probabilidad y la estadística para científicos de datos": segunda entrega

Acabo de subir:

  • Modificaciones y correcciones a los dos primeros capítulos.
  • Un tercer capítulo sobre distribuciones de probabilidad.

Queda ampliar, organizar y razonar la biblografía correspondiente a ese tercer capítulo.

Lo más original (con cuádruples comillas) de este capítulo es tal vez la construcción de la función de densidad a partir de histogramas obtenidos a partir de simulaciones de variables aleatorias. Algo sobre lo que creo que escribí en su día en el blog pero que no ubico.

Sobre los orígenes de la falacia ecológica

Dice la Wikipedia que la primera denuncia de luego conocida como la falacia ecológica hay que buscarlos en Ecological Correlations and the Behavior of Individuals de un tal W. S. Robinson. Cuenta, entre otros ejemplos, cómo existía una correlación positiva entre ser inmigrante y ser analfabeto (según el censo de 1930 de EE.UU.), evidenciada por la tabla

en tanto que si se examinan los mismos datos por divisiones (ciertas agrupaciones de estados que, se conoce, eran más habituales hace tiempo que ahora), se obtiene una representación de la forma