estadística

Una regresión de Poisson casi trivial con numpyro

El otro día hubo, parece, cierto interés por modelar la siguiente serie histórica de datos: Notas al respecto: El eje horizontal representa años, pero da igual cuáles. El eje vertical son números naturales, conteos de cosas, cuya naturaleza es poco relevante aquí, más allá de que se trata de eventos independientes. Se especulaba con un posible cambio de tendencia debido a una intervención ocurrida en alguno de los años centrales de la serie.

Sobre la correlación entre Y y la predicción de Y

Supongamos que tenemos un modelo construido sobre unos datos $(x_i, y_i)$. Para cada $x_i$, el valor $y_i$ es una realización de una variable aleatoria $Y_i$ con distribución $F_i(y)$. Por simplificar, podemos suponer, además, que para el ajuste se utiliza el error cuadrático. Entonces, lo mejor que puede hacer el modelo es encontrar la media $\mu_i$ de cada $Y_i$ —bueno, en realidad, querría encontrar $\mu_x$ para cada $x$ potencial, pero hoy vamos a dejar esa discusión aparcada—.

Significativo vs significativo

Con esta entrada voy a abundar en una literatura ya muy extensa y que muchos encontrarán ya, con razón, aburrida, sobre las diferencias entre significativo y significativo. Véase: En 2006, el ingreso anual bruto medio de los médicos era de 70.717 USD […] para los países con el sistema Bismark y 119.911 USD […] para los del sistema Beveridge. Las diferencias no son significativas (p=0.178). Olé. El párrafo está extraído de PNS89 International comparison of the remuneration of physicians among countries with bismarck and beveridge health care system y traducido por un servidor.

Raking, Introdución al

I. Ni que decirse tiene que a partir de las probabilidades conjuntas pueden construirse las marginales: se integra (o suma) y ya. II. El problema inverso es irresoluble: es imposible reconstruir las conjuntas a partir de las marginales. Las conjuntas, condicionadas a las marginales, pueden tener muchos grados de libertad. Sin embargo, a petición de los usuarios finales, los comerciales de la estadística se han comprometido históricamente a resolver ese problema de manera científica.

Sobre la llamada ley del estadístico inconsciente

Es innegable que el rótulo ley del estadístico inconsciente llama la atención. Trata sobre lo siguiente: si la variable aleatoria es $X$ y la medida es $P_X$, entonces, su esperanza se define como $$E[X] = \int x dP_X(x).$$ Supongamos ahora que $Y = f(X)$ es otra variable aleatoria. Entonces $$E[Y] = \int y dP_Y(y)$$ para cierta medida (de probabilidad) $P_Y$. Pero es natural, fuerza de la costumbre, dar por hecho que

Operacionalización de la "igualdad de opotunidades"

Tiene Google (o una parte de él) un vídeo en Youtube, sobre el que me resulta imposible no comentar nada. Trata, esencialmente, de cómo operacionalizar a la hora de poner en marcha modelos esos principios de justicia, igualdad de oportunidades, etc. de los que tanto se habla últimamente. La definición de igualdad de oportunidades que se postula en el vídeo, tal vez demasiado esquemática por su orientación didáctica, es la siguiente:

Sobre la "African dummy"

2022 es un mal año para recordar un asunto sobre el que tenía anotado hablar desde los inicios del blog, allá por 2010: la llamada African dummy. Mentiría, sin embargo, si dijese que no es oportuno: está relacionado con temas que hoy se consideran importantes, aunque tratado al estilo de los noventa. Es decir, de una manera inaceptablemente —para el paladar de hogaño— distinta. La cosa es más o menos así: en el 91, a R.

¿Qué hora debería ser?

En esta entrada propongo y no resuelvo un problema que puede considerarse o estadístico o, más ampliamente, de ajuste de funciones —sujeto a innumerables ruidos—: determinar qué hora debería ser. Eso de la hora —y me refiero a los horarios de invierno, verano, etc. y más en general, la desviación de la hora nominal con respecto a la solar— se parece un poco a la economía. En economía tienes cantidades nominales y reales.

UMAP, tSNE y todas esas cosas

Estaba repasando cosas sobre reducción de la dimensionalidad y, en concreto, UMAP y tSNE. Me ha parecido conveniente replantear las cosas sobre primeros principios para que todo se entienda mejor. El problema es el siguiente: Tenemos $K$ puntos $x_i$ en un espacio de dimensión $N$. Buscamos su correspondencia con otros $K$ puntos $y_i$ en un espacio de dimensión $n « N$. De manera que las configuraciones de los $x_i$ y los $y_i$ sean similares en el sentido de que la matriz de distancias $(d(x_i,x_j))$ sea parecida a la $(d(y_i, y_j))$.

El equivalente cierto (y apuntes para su aplicación en el monotema ¡tan cansino! de este tiempo)

A veces toca comparar dos variables aleatorias: ¿cuál de dos juegos preferirías? Hay muchas maneras de resolver ese problema, de una larga historia, con mejor o peor fortuna. En el fondo, hay que crear un orden en el conjunto de las variables aleatorias y, en el fondo —y perdónenme mis excolegas matemáticos—, proyectarlas de alguna manera sobre los números reales. Si este número real se elige de alguna manera razonable (p.

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, y IV

[Esta es la cuarta y última (por el momento) de una serie de entradas sobre el tema que se anuncia en el título.] En la tercera entrega de la serie se introdujo el frecuentismo como una particular manera de resolver el problema de minimización asociado a la expresión $$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta.$$ En esta entrada se introducirá el bayesianismo de manera análoga con el concurso del teorema de Fubini (que, recuérdese, permite conmutar las integrales):

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, III

[Esta es la tercera de una serie de cuatro o cinco entradas sobre el tema que se anuncia en el título.] Terminó la segunda entrada de anunciando cómo la manera de operar con la expresión $$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta$$ determina las dos grandes corrientes dentro de la estadística. Para entender la primera, el frecuentismo, se debe reescribir la expresión anterior como $$L(\hat{\theta}) = \int_\theta \left[\int_X L(\theta, \hat{\theta}) p(X | \theta) dX \right] p(\theta)d\theta$$

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, II

[Esta es la segunda de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.] Terminó la primera entrada de la serie reconociendo que aún no se había entrado en materia estadística, que para ello habría que hablar de datos. Y, en efecto, la estadística principia cuando, por decirlo de manera sugerente aunque breve e imprecisa, $\theta$ genera unos datos $X$ que proporcionan pistas sobre su naturaleza.