Estadística

Mortalidad y domingos

Es sabido que nacen menos niños en domingo, efecto, parece de la planificación de partos. Tengo cierto indicio, que voy a ver cuándo (y si) puedo corroborar, de que también hay menos fallecimientos. Mírese

que es una gráfica de mortalidad diaria en España y en la que, contumazmente, los días 2 de junio (domingo), 9 de junio (domingo) y 16 de junio (domingo), las observaciones quieren salirse de las bandas que para que no trotaran libérrimamente por el plano cartesiano construyó el bueno de Monsieur Poisson.

Modelización de retrasos: una aplicación del análisis de supervivencia

En vigilancia epidemiológica contamos eventos (p.e., muertes o casos de determinadas enfermedades). Lo que pasa es que el caso ocurrido en el día 0 puede notificarse con un retraso de 1, 2, 3… o incluso más días. En algunas aplicaciones, incluso semanas.

¿Cómo estimar el número de casos ocurridos el día 0 el día, p.e., 5?

Se puede aplicar el análisis de la supervivencia donde el evento muerte se reinterpreta como notificación. El el día 0 todos los sujetos están vivos y, poco a poco, van cayendo. Como en los consabidos modelos/gráficos de Kaplan-Meier,

Bayes no había previsto esto

Muestreo. Se trata de seleccionar unas unidades experimentales (proceso caro) y tratar de estimar una proporción (p.e.) en la población total.

Existen técnicas para estimar el valor N mínimo para garantizar cierto margen de error. Pero dichas técnicas requieren conocer (algo d-) el resultado del experimento para estimar N (p.e. una estimación de la proporción que cabe esperar).

Circulus in demonstrando.

Bayes. Ve examinando unidades y actualiza tus intervalos de credibilidad hasta que tengan la anchura solicitada.

Causalidad. Atribución. Madrid Central.

Si hay algo inaprensible, es la causalidad. No la que entiende Maripili, claro, sino esta. Pero vivimos en tiempos de tremendamente polémicas y presuntamente potentísimas y causas eficientes. Verbigracia, la desigualdad… y Madrid Central:

Argumentas en términos causales cuando esperas que te lea Maripili. Entre gente seria solemos hablar más bien de atribución. Lo de la atribución consiste en tratar de repartir un efecto entre posibles causas potenciales. Como típicamente no hay criterio definitivo, en la práctica funciona así:

Modelos GARCH (o: no me cuentes tu vida, dame el pxxx modelo generativo y ya)

Los modelos GARCH son otra de esas cosas de las que oyes hablar y como nunca se convierten en problemas de los de carne en el asador, preocupan poco y ocupan menos (más allá de que sabes que se trata de modelos similares a los de series temporales de toda la vida donde la varianza varía de cierta forma a lo largo del tiempo). Pero comienzas a leer cosas como esta y no te enteras de nada: solo hay letras y llamadas a funciones oscuras y oscurantistas.

¿Y si quitamos el puntico de arriba a la izquierda?

Esta entrada es una illustración de otra de no hace mucho, Análisis de la discontinuidad + polinomios de grado alto = … Mirad:

Se ha hecho un análisis de la discontinuidad usando parábolas a ambos lados del punto de corte. Y la discontinuidad no es pequeña. Pero me juego un buen cacho de lo que quede de mi reputación a que mucho de ella la explica el puntico de arriba a la izquierda.

Cotas superiores para el AUC

El AUC tiene una cota superior de 1. Concedido. Pero alguien se quejó de que el AUC = 0.71 que aparece aquí era bajo.

Se ve que ignora esto. Donde está todo tan bien contado que no merece la pena tratar de reproducirlo o resumirlo aquí.

Matematización oscurantista

Hoy he participado en una discusión en Twitter acerca del artículo Eficacia predictiva de la valoración policial del riesgo de la violencia de género que sus autores resumen así:

Para prevenir la violencia de género se desarrolló el protocolo denominado «valoración policial del riesgo» (VPR) para su uso por profesionales de las fuerzas de seguridad del Estado. Este protocolo es el núcleo principal del sistema VioGén, del Ministerio del Interior español, y que se aplica de forma reglamentaria en todas las situaciones de violencia de género denunciadas. Para evaluar la eficacia predictiva de la VPR se realizó un estudio longitudinal prospectivo con un seguimiento de 3 y 6 meses de 407 mujeres que habían denunciado ser víctimas de violencia por parte de su pareja o expareja. Los resultados obtenidos por medio del análisis de regresión logística ofrecen una AUC = 0.71 para intervalos de tiempo en riesgo de 3 meses (p < .003) y con una odds ratio de 6.58 (IC 95%: 1.899-22.835). La sensibilidad de la VPR fue del 85% y la especificidad, del 53.7%. Los resultados indican que la VPR muestra una buena capacidad predictiva y unas características psicométricas adecuadas para la tarea para la que se diseñó.