Estadística

Metropolis-Hastings en Scala

Tengo la sensación de que un lenguaje funcional (como Scala) está particularmente bien adaptado al tipo de operaciones que exige MCMC.

Juzguen Vds.

Primero, genero datos en R:

datos <- rnorm(500, 0.7, 1)
writeLines(as.character(datos), "/tmp/datos.txt")

Son de una normal con media 0.7. En el modelo que vamos a crear, suponemos conocida (e igual a 1) la varianza de la normal y trataremos de estimar la media suponiéndole una distribución a priori normal estándar. Y con Scala, así:

Distribuciones sin media: ¿qué pueden suponer en la práctica?

Aunque esta entrada es sin duda resabida de los más de mis lectores, quedarán los que aún no sepan que ciertas distribuciones no tienen media. Condición necesaria para que una distribución la tenga es que

$$ \int_{-\infty}^\infty |x| f(x) dx$$

tenga un valor finito, cosa que, por ejemplo, no cumple la de Cauchy. Igual hay a quien esto le parece una rareza matemática, un entretenimiento de math kiddies sin implicaciones prácticas. Además, porque para que que la integral anterior diverja se necesita que las distribuciones puedan tomar valores arbitrariamente altos y las que se manejan en la práctica están acotadas si no por el número de átomos del universo por el de céntimos de bolívar venezolano necesarios para comprar todas las cosas que caben en el ancho mundo.

Las distribuciones (y platos) con nombre

Hay platos con nombre. P.e., tortilla de patata o tiramisú. También hay distribuciones (de probabilidad) con nombre. P.e., normal, binomial, Poisson, hipergeométrica.

Hay quienes quieren saber (1) todas (o muchas) de esas distribuciones con nombre y (2), dados unos datos, cuál de ellas siguen. Esta entrada va a tener la url a la que de ahora en adelante remita a quien me las formule.

A pesar de que algunos platos tienen nombre, el otro día se podía probar en el Diverxo espárrago blanco a la mantequilla negra con emulsión de leche de oveja, espardeña y salmonete. Que no es ni tortilla de patata, ni tiramisú ni otra cosa con nombre que se le parezca.

Ruido de alarmas, ruido de p-valores; mucho, mucho ruido, tanto, tanto ruido

Me estoy volviendo intolerante al ruido. Y esta mañana (¿qué carajos hago levantado tan temprano?) no había forma de que dejase de sonar la alarma de unos andamios de la plaza, no paraba la batidora del bar desde donde escribo y, encima, esto, esto, esto, esto, esto, esto,…

Son todas noticias relacionadas con la publicación de esto, un artículo que describe un estudio clínico (¡con 84 sujetos!) en el que se comparan dos grupos (uno tratado y otro no) que,

Detección de "outliers" locales

Aunque outlier local parezca oxímoron, es un concepto que tiene sentido.

Un outlier es un punto dentro de un conjunto de datos tan alejado del resto que diríase generado por un mecanismo distinto que el resto. Por ejemplo, puedes tener las alturas de la gente y alguna observación que parece producto de otra cosa como, por ejemplo, errores mecanográficos en la transcripción. Un outlier está lejos del resto. Pero, ¿cuánto?

Con ciertas distribuciones tiene sentido pensar que los outliers son puntos a una distancia superior a nosecuántas desviaciones típicas de la media. Más en general, fuera de un determinado círculo. Una medida similar: serían outliers aquellos puntos que a una determinada distancia solo tienen un determinado porcentaje (pequeño) del resto. Todas estas son medidas globales.

¿Alguien podría identificar tirios y troyanos?

Con los datos

pcts <- cbind(
  c(35.7, 19.6, 6.6, 16.6, 9.6),
  c(0.3, 0.2, 0.2, 0.3, 0.8),
  c(25.0, 14.9, 10.7, 32.7, 12.9),
  c(1.6, 8.0, 8.5, 6.5, 7.9),
  c(11.0, 18.7, 7.9, 12.7, 8.0),
  c(3.2, 21.5, 52.9, 16.7, 47.9)
)

totales <- c(1102, 975, 596, 638,	174)
tabla <- round(t(pcts * totales / 100))

y el concurso de

library(MASS)
biplot(corresp(tabla, nf = 2))

genero

partidos_cadenas

que a lo mejor no resulta demasiado interesante si no añado que las columnas se refieren a partidos políticos y las filas a cadenas en las que, según el CIS, sus votantes prefieren para seguir la actualidad política. Eso sabido, ¿cuál es cuál?

El extraño caso de la media empírica menguante

La distribución lognormal es la exponencial de una distribución normal. Su media, Wikipedia dixit, es $latex \exp(\mu + \sigma^2 /2)$.

Dada una muestra de la distribución lognormal (y supuesto, por simplificar, $latex \mu=0$), podemos calcular

  • su media y
  • una estimación de su $latex \sigma$ y calcular $latex \exp(\sigma^2 /2)$

y uno pensaría que los valores deberían ser similares. Mas pero sin embargo,

library(ggplot2)

set.seed(123)

sigmas <- seq(1, 10, by = 0.1)

res <- sapply(sigmas, function(sigma){
  a <- exp(rnorm(1e6, 0, sigma))
  mean(a) / exp(var(log(a))/2)
})

tmp <- data.frame(sigmas = sigmas, medias = res)

ggplot(tmp, aes(x = sigmas, y = medias)) +
  geom_point() + geom_smooth()

produce

Encuestas electorales: medios y sesgos (II)

Aquí quedó pendiente hablar de datos y métodos. Los primeros proceden de El Mundo. Solicité a Marta Ley, una coautora, los datos pero, antes de que contestase que sí (¡gracias!), me di cuenta de que podía obtenerlos solito: basta con capturar la llamada que el javascript local hace al servidor.

¿Métodos? Mejorables: se suaviza la intención de voto (con loess) y se estima la diferencia con un modelo de efectos mixtos, i.e.,

modelo<- lmer(delta ~ 1 + (1 | medio),
    data = misdatos)

¿Caveats? Veo dos: el primero, que loess suaviza teniendo en cuenta también observaciones futuras. Los autores de las encuestas no ven la verdad: solo los resultados de las encuestas previas. Debería haber usado como referencia la mejor predicción basada en observaciones pasadas. El segundo, que los porcentajes de los distintos partidos suman un total. Los sesgos no son independientes y yo los modelo como tales.

Encuestas electorales: medios y sesgos (I)

Existen las encuestas electorales. Las publican medios. Algunos, se dice, tienen sesgos. Lo he estudiado y a continuación muestro resultados.

Para el PP:

sesgo_encuestas_pp

Para el PSOE:

sesgo_encuestas_psoe

Para Podemos y cía:

sesgo_encuestas_podemos

Para Ciudadanos:

sesgo_encuestas_ciudadanos

Para IU:

sesgo_encuestas_iu

En otra entrada, datos y métodos. Hoy solo adelanto que el eje horizontal mide puntos porcentuales y que las encuestas se remontan a enero de 2015.