Dos nuevos libros de estadística
Son:
- El detective Salazar y los modelos bayesianos de Emilio Torres Manzanera.
- Fundamentos de estadística de José Ramón Barrendero.
Son:
Voy a plantear el problema del día en el contexto más simple y familiar para la mayoría que se me ocurre: una ANOVA para comparar dos tratamientos. Se puede representar de la forma
$$y_i \sim \alpha + \beta_{T(i)} + \epsilon$$
donde $T(i)$ es el tratamiento, $A$ o $B$, que recibe el sujeto $i$. Parecería que el modelo estuviese sugiriendo determinar tres parámetros, $\alpha$, $\beta_A$ y $\beta_B$, correspondientes al efecto sin tratamiento y los efectos adicionales de los tratamientos $A$ y $B$. Sin embargo, si $\hat{\alpha}$, $\hat{\beta}_A$ y $\hat{\beta}_B$ es una solución, también lo es $\hat{\alpha} + \lambda$, $\hat{\beta}_A - \lambda$ y $\hat{\beta}_B - \lambda$ para cualquier $\lambda$. ¡No hay solución única (sino, más bien, una recta entera de soluciones)!
Las distintas disciplinas estudian aspectos diferentes de la realidad. Para ello crean modelos. Un modelo es una representación teórica y simplificada de un fenómeno real. Por un lado, el territorio; por el otro, el mapa.
Los físicos modelan cómo oscila un péndulo y se permiten obviar cosas como el rozamiento del aire. Los economistas, la evolución del PIB o la inflación. Los biólogos, la absorción de una determinada sustancia por un tejido. Los ingenieros, el comportamiento aerodinámico de un prototipo. Etc.
Hoy voy a abundar sobre el modelo 3PL que ya traté el otro día. En particular voy a contrastar críticamente varios modelos alternativos sobre los mismos datos.
El modelo que implementé (aquí) puede describirse así:
$$r_{ij} \sim \text{Bernoulli}(p_{ij})$$ $$p_{ij} = p(a_i, d_j, …)$$ $$a_i \sim N(0, 1)$$ $$d_j \sim N(0, 1)$$ $$\dots$$
donde
$$p = p(a, d, \delta, g) = g + \frac{1 - g}{1 + \exp(-\delta(a- d))}$$
y $a_i$ y $d_j$ son la habilidad del alumno $i$ y la dificultad de la pregunta $j$ respectivamente. Nótese además cómo en $f$ estas dos variables intervienen solo a través de su diferencia, $a - d$.
Tenía ganas de meterle mano al modelo 3PL de la teoría de respuesta al ítem. Había un par de motivos para no hacerlo: que viene del mundo de la sicometría, que es un rollo macabeo, y que sirve —en primera aproximación— para evaluar evaluaciones (preguntas de examen, vamos), un asunto muy alejado de mis intereses. Pero acabaron pesando más:
El problema en el que el modelo 3PL se propone como solución es sencillo:
Escribí sobre la paradoja de Lord en 2013 y luego otra vez, tangencialmente, en 2020. Hace poco releí el artículo de Pearl sobre el tema y comoquiera que su visión sobre el asunto es muy distinta de la mía, voy a tratar de desarrollarla.
Aunque supongo que es generalizable, la llamada paradoja de Lord se formuló inicialmente al estudiar y comparar datos antes/después. En su descripción original de mediados de los 60, había niños y niñas a los que se había pesado en junio y en septiembre. El problema (y la paradoja) aparecían al tratar de modelar esa variación de peso según el sexo.
Hace un tiempo tuve que leerlo todo sobre cierto tema. Entre otras cosas, cinco libros bastante parecidos entre sí. Era una continua sensación de déjà vu: el capitulo 5 de uno de ellos era casi como el tres de otro, etc. Pensé que podría ser útil —y hacerme perder menos tiempo— poder observar el solapamiento en bloques —sígase leyendo para entender mejor el significado de lo que pretendía—.
En esta entrada voy a mostrar el resultado de mis ensayos sobre unos textos distintos. Los que me interesaban originalmente estaban en PDF y hacer un análisis más o menos riguroso exigía mucho trabajo de limpieza previo. Pensando en otros textos distintos que vienen a contar la misma historia se me ocurrió utilizar dos de los evangelios sinópticos (en particular, los de Mateo y Marcos).
… muchas cosas serían muy distintas hoy en día. Hoy quiero elaborar sobre su artículo de 1900 X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling famoso por nada menos que introducir el concepto de p-valor y el uso de la $\chi^2$ para medir la bondad de ajuste.
El primero,
In God we trust. All others must bring data.
de W. E. Deming, es pura estadística pop. El segundo, con el que tropecé releyendo unas presentaciones de Brian Ripley, dice
No one trusts a model except the person who wrote it; everyone trusts an observation, except the person who made it.
y parece ser que se la debemos a un tal H. Shapley.
Efectivamente, hoy en día desconfiamos de los modelos pero depositamos una gran confianza en los datos. Pero de eso se sale: basta con hablar un rato con la gente encargada de recopilarlos.
He leído —consecuencia del aburrimiento y la inercia— en diagonal el artículo Explorando las narrativas locales: claves para entender el apoyo político a VOX que no recomiendo salvo que tengas un rato que matar y ninguna otra cosa que hacer pero del que rescato esta pequeña gema:
Sobre estos datos utilizo un algoritmo de aprendizaje automático (muy similar al que emplea el correo electrónico para determinar qué mensajes deberían ir a la carpeta de correo no deseado) para clasificar los tweets por tema.