Estadística

Problemas de los promedios de encuestas electorales

El otro día, al hablar de las encuestas electorales y su relación con la predicción electoral, me referí tangencialmente —y, ahora que lo pienso, un tanto confusamente— a los promedios de encuestas. Vine a decir que los promedios de encuestas como

de la Wikipedia constituyen una primera aproximación —burda— al problema de la predicción electoral cuando, realmente, deberían considerarse otro nowcast.

Estos promedios de encuestas deberían ser más fiables que las encuestas particulares, aunque solo sea porque utilizan más información. Sin embargo, están expuestas a una serie de problemas como los que se anuncian/denuncian aquí.

Encuestas vs predicciones electorales

I.

Imaginemos que estamos viendo un partido de fútbol en la tele. Arriba, a la izquierda, hay un par de cifras: es el marcador que nos dice cómo va el partido.

En un mundo paralelo, en lugar del resultado provisional (p.e., 0-0 al comenzar el partido), el marcador podría mostrar la predicción del resultado al acabar el encuentro. Podría suceder que en el minuto cero indicase algo así como 3-2 si tal fuese la mejor estimación posible del resultado final.

Buscándole las cosquillas al "Indicador Multidimensional de Calidad de Vida"

El IMCV es esto. (Brevemente: un indicador experimental del INE que combina datos de varias encuestas, las agrega con unos pesos y produce unos números que permiten comparar CCAA entre sí y a lo largo del tiempo).

Una característica muy amena del IMCV es que permite recalcular en índice con pesos ad hoc aquí.

Con los pesos originales, el indicador (de 2021) queda así:

Por probar algo, he puesto a cero todos los pesos menos el que se refiere, nada menos, que a Ocio y relaciones sociales por ver qué pasa:

Estadísticas creativas: el "peso del paro"

Mirad que trato de abstraerme del mundanal ruido y de las marcianadas de tirios y troyanos. Me he comprado una segunda EPS32, le he instalado Micropython y solo aspiro a que se me deje en paz.

Pero como me ronda en la cabeza escribir algún día cosas en serio sobre sofística estadística, no he podido dejar de lado mis otros entretenimientos un rato para comentar esto:

Los dos gráficos que lo acompañan son:

Extrapolar es difícil (¿imposible?); hoy, con "sigmoides"

La extrapolación problemática. Que es la manera erudita de decir que ni de coña.

La extrapolación —lineal, en este caso— tiene dos problemas:

  1. No sabemos si el fenómeno va a seguir comportándose de manera lineal fuera del rango de las observaciones.
  2. Aunque lo sea, el error cometido al ajustar una recta usando solo datos de un extremo es muy grande. Lo ideal, de hecho, es tener datos en ambos extremos del intervalo de interés.

[De hecho, creo que lo anterior se puede convertir en un teorema: si tenemos datos $(x_i, y_i)$, el mejor modelo lineal se obtiene cuando la mitad de los $x_i$ son iguales al mínimo de los $x_i$ y la otra mitad, al máximo de los $x_i$.]

Reducción del error en tests A/B (y similares)

Hoy, cuatro maneras distintas de realizar un test A/B. Comienzo con unos datos simulados que tienen este aspecto:

set.seed(1)
n <- 1000
test <- c(rep(0, n/2), rep(1, n/2))
y0 <- rnorm(n)
y1 <- y0 + test + rnorm(n)

Ahí:

  • n es el número de sujetos, 1000.
  • test es un vector que indica el tratamiento: 500 en un grupo, 500 en otro.
  • y0 es el valor de/asociado a los sujetos en un periodo anterior al tratamiento.
  • y1 es el valor de los sujetos después del tratamiento. Como se puede ver, está relacionado con el tratamiento en sí y con el valor anterior. Se le ha añadido, además, cierta cantidad de ruido estadístico.

Hay varias maneras de estimar el efecto del tratamiento (o de, como dicen algunos, realizar un test A/B). Voy a mencionar cuatro.

El negocio bancario como corolario del teorema central del límite (y sí, de paso, sobre SVB)

Todo lo que voy a contar aquí es cierto y a la vez falso. Es cierto en primera aproximación —en esa en la que las vacas son esféricas— y falso cuando se examinan los términos de orden superior del desarrollo de Taylor de lo que cuento. Advertido lo cual, comienzo.

I

Los bancos funcionan esencialmente así: reciben dinero de unos clientes y se lo prestan a otros. Ganan dinero por la diferencia en los tipos de interés entre depósitos y préstamos.

Breve introducción crítica a la llamada "predicción conforme"

Pensé que había hablado antes de la llamada predicción conforme. Lo habré soñado. Así que me pongo con ello.

Me retrotraigo a hace unos cuantos años, antes de la explosión del deep learning, a la época en la que aún tenía vida social. Uno de los pioneros de esas técnicas me contaba un día en un restaurante cómo funcionaban. Por ejemplo, para clasificar, creaban unas funciones muy complejas cuya salida era un vector (largo) de números positivos que sumaban uno. Cuando todos esos números eran casi cero y uno de ellos, el que correspondía a la etiqueta “conejo”, era casi uno, el modelo decía: “conejo”. Etc.

¿Se puede levantar la mano y decir que la curva, esencialmente, crece y no decrece?

Mirad el gráfico

o

que representa los mismos datos cambiando la escala de las abscisas. He recortado convenientemente las etiquetas de los ejes para que la ideología no confunda a la recta percepción visual de la cosa. La pregunta ahora es: ¿son crecientes las curvas?

Las respuestas de primer y segundo orden son obvias. Creo.

Sin embargo, las gráficas están extraídas de aquí, donde se elabora un discurso a partir de la idea de que las curvas son esencialmente planas si no decrecientes. En ningún punto del texto se dice: “¡eh, contemplad cómo estas curvas son esencialmente crecientes!” Un lector despistado o, incluso, un lector que se quede con el titular, se llevará a la próxima discusión del bar una idea torcida (no sé si decir de la realidad o de la perspectiva de la realidad que recogen los datos subyacentes a las gráficas).

Una "app" para la selección de parámetros de prioris informativas

Un ejemplo de caso de uso: uno de los parámetros de tu modelo está relacionado con la duración de algo. El cliente, que tiene 20 años de experiencia en la cosa te dice: el tiempo está típicamente comprendido entre uno y siete días. Por lo tanto, decides introducir en tu modelo una priori informativa gamma que con una alta probabilidad asigne valores en el intervalo $[1, 7]$. Pero, ¿cuáles son sus parámetros?