De qué va TimesNet

Toca TimesNet. Se trata de un modelo para la predicción (y más cosas: imputación, detección de outliers, etc.) en series temporales. Tiene que ser muy bueno porque los autores del artículo dicen nada menos que

As a key problem of time series analysis, temporal variation modeling has been well explored.

Many classical methods assume that the temporal variations follow the pre-defined patterns, such as ARIMA (Anderson & Kendall, 1976), Holt-Winter (Hyndman & Athanasopoulos, 2018) and Prophet (Taylor & Letham, 2018). However, the variations of real-world time series are usually too complex to be covered by pre-defined patterns, limiting the practical applicability of these classical methods.

Cuidado con ChatGPT (advertencia núm. 232923423)

I.

Cuando éramos críos e íbamos al colegio, todos hemos participado en conversaciones que discurrían más o menos así:

— Quiero ver el programa X.
— No puedes porque A, B y C.
— Pero Fulanito lo ve todos los días.
— No te fijes en lo que hace el más tonto; fíjate en lo que hace el más listo.

Los primeros buscadores de internet eran catastróficos. Un día apareció uno nuevo, Google, con una filosofía de madre de los setenta: fijarse en lo que hacía el más listo, no el más tonto. En el fondo, tecnicismos aparte, era en lo que se basaba el PageRank.

Villaverde, Carabanchel, Puente de Vallecas, Tetuán, Ciudad Lineal, Usera, Villa de Vallecas, Latina, San Blas-Canillejas, Hortaleza, Moratalaz, Vicálvaro, Retiro, Fuencarral-El Pardo, Arganzuela, Moncloa-Aravaca, Chamartín, Barajas, Centro, Chamberí, Salamanca

La anterior es una lista de los 21 distritos del municipio de Madrid en un orden muy concreto. Si se te ocurre alguno, casi seguro, te has equivocado.

Porque se trata de una lista en estricto orden de porcentaje de colegios públicos de primaria (CEIP) que ofrecen clases en modalidad de jornada continua:

Los datos completos pueden consultarse aquí. Las fuentes son el CISF para el numerador y el buscador de colegios de la Comunidad de Madrid para el denominador.

LLMs: grados de libertad en la generación de texto

Me he entretenido dibujando

que representa gráficamente los grados de libertad de un LLM según va generando texto. Brevemente, he arrancado con

Never in the history of

y he dejado que mi LLM fuese construyendo

Never in the history of “The Bachelor” has a contestant been so hated by the viewing public.

The “Bachelor” franchise has had its share of villains, but the one who has

mientras registraba el vector de probabilidades en cada iteración, es decir, el vector que permite que el LLM elija, por ejemplo, villains en lugar de maples, vikings or frenchmen.

¿Y si calculamos la potencia de un test a posteriori?

Esta entrada continúa esta otra y describe un cambio realizado en la app para ilustrar qué ocurre —spoiler: nada bueno— cuando se calcula el poder de un test a posteriori, es decir, usando como estimaciones el efecto y su ruido los valores observados.

Como comprobará quien use la herramienta, puede ocurrir casi cualquier cosa. Y, en particular, para potencias de partida pequeña, la estimación de la potencia a posteriori es una enorme sobreestimación de la real cuando la prueba es significativa.

LLMs en perspectiva

I.

Llevamos muchos años —muchos más de los que la mayoría de la gente piensa— detrás de mecanismos del tipo

$$f(h) = x$$

donde $h$ es una historia y $x$ es una continuación suya coherente con $h$. El texto

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

se construyó en 1948 usando un procedimiento básico: $h$ son dos caracteres y $x$ es otro caracter que se elige al azar de acuerdo cierta probabilidad condicional $P(x | h)$ que se estima a partir de frecuencias observadas en un determinado corpus.

Si tus datos son minúsculos y están hipersesgados, no los tires a la basura: aquí te contamos cómo reciclarlos.

I.

Supongamos que X es una población determinada. A alguien le interesa estudiar cierto aspecto de ella. Lo que procede es:

  1. Muestrear X adecuadamente.
  2. Medir los parámetros de interés en la muestra.
  3. Aplicar técnicas de inferencia estadística.
  4. Redactar las conclusiones pertinentes.

II.

Supongamos que a alguien le interesa aprender sobre cierto aspecto de una población X. Lo que tiene que hacer es buscar publicaciones en que lo hayan estudiado como se indica en I. Seguramente hay muchas más fuentes que hablen de ese aspecto de la población X, pero si no se han redactado siguiendo el esquema anterior o no están basados en fuentes primarias que lo hayan hecho así, solo acertarán, si lo hacen, de casualidad.

¿Qué catástrofes cabe esperar de las pruebas estadísticas con poca potencia?

Desde cierto punto de vista, lo ideal a la hora de realizar una prueba estadística es que:

  • El efecto sea grande.
  • La variación de los sujetos sea pequeña.
  • El tamaño de la muestra sea generoso.

Pero solo bajo cierto punto de vista: todas las pruebas estadísticas en que pasa eso ya se han hecho antes. Llevamos cientos de años haciendo ciencia y billones de euros invertidos en ella. Lo que nos enseñan las pruebas estadísticas con un SNR (signal to noise ratio) y posibilidad de extraer nuevas observaciones a bajo coste, ya lo sabemos desde hace tiempo. Lo que queda por averiguar de ese antílope del que ya se han saciado la manada de leones que lo cazó son las vísceras, tendones y huesos que roen las hienas. Quienes se dedican a la ciencia están abocados, por aquello de la originalidad, a estudiar problemas en los que algunas de las condiciones anteriores deja de cumplirse. Es decir, muchos de los resultados publicados han estudiado datos en los que:

Sobre la etiqueta medioambiental de los monitores

I.

La semana pasada, tras 18 años de buen servicio —ha estado encendido ininiterrumpidamente desde, por lo menos, el confinamiento—, falleció el que degradé a segundo monitor: un LG Flatron L1910S de 19 pulgadas y una resolución hoy mísera que compré en Carrefor y me costó 500 euros del ala. Podría haberlo reparado porque su único problema, casi seguro, es un fallo superficial en la alimentación; pero me he dejado llevar por el consumismo. De paso, he jubilado uno de los últimos cables VGA que deben de quedar operativos al norte del Manzanares.

Cómo gestiono mis inversiones a largo plazo en renta variable

I.

Esta entrada es una especie de continuación de otra que escribí recientemente sobre la gestión de la liquidez en tiempos de inflación. Describe a alto nivel y sin detalles concretos cómo gestiono mis inversiones a largo plazo en renta variable —la renta fija merece un apartado aparte— y cabe en mi blog por su relación (o no) con la teoría básica de las inversiones financieras, fuertemente fundamentada en la estadística.